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ABSTRACT 

Digital filtering techniques have become significant methods for 

data processing. This report presents the general theory through the 

definition of a digital filter and also presents a class of digital 

filters, called Martin-Graham filters, which are particularly well- 

suited to the operation of data smoothing. Included in this class are 

filters for non-real-time smoothing; smoothing and differentiation; 

smoothing and interpolation; smoothing, differentiation, and inter- 

polation; and smoothing and integration. Application of these filters 

requires that the data be band-limited. In most cases, error bounds 

are given. Sample programs and sample results are also included. 
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PREFACE 

On November 6, .1964, a project sponsored by the Computation 

Laboratory of the Marshall Space Flight Center, Huntsville, Alabama, 

was initiated with Northeast Louisiana State College to perform a 

research study of numerical smoothing methods and numerical aspects 

of finite difference methods. The research was supported in its 

entirety by the National Aeronautics and Space Administration, 

Huntsville, Alabama, under Contract No. NAS 8-11492 and was per- 

formed by members of the Mathematics Department of Northeast Louisiana 

State College. The Contract Technical Representatives were Mr. Ronald 

J. Graham and Mr. David G. Aichele of the Computation Laboratory. 

Mathematics Department members involved in the research during the term 

of the contract were Dr. Edward B. Anders, Principal Investigator from 

November 6, 1964 to September 1, 1966, Mr. James T. Taylo, Investigator, 

November 6, 1964 to September 1, 1966, and Principal Investigator, 

September 1, 1966 to March 1, 1967; and for various periods, Dr. Daniel 

E. Durpee, Dr. Lonnie T. Bennett, Mr. James O'Neil, Dr. Dale R. Bedgood, 

Mr. Stephen Hamm, and Mr. Kenneth R. Russell. Typing of the final report 

was done by Mrs. Betty Stone and the proofreading was done by Mr. Russell 

Rainbolt. 

Two of the investigators on this contract were also involved in the 

research performed under Contract No. NAS 8-11492 at Auburn University, 

Auburn, Alabama. The final report on that contract, ~~-136, was well- 

received, and one project undertaken under NAS 8-11492 was revision and 
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rewriting of that final report. The report presented here completes 

that project, and also incorporates significant results obtained under 

the present contract. 

In writing this report, it was assumed that the reader is familiar 

with Fourier series. A very readable presentation of the Fourier theory 

can be found in[l] . 

The methods employed here in the applications assumes that the 

transfer function of a filter is given analytically, and that it is 

such that its inverse Fourier transform can be found. Cases do arise 

where only values of the transfer function of a filter are kn6wn at 

equally spaced points on one-half the period of the filter. A method 

for computing the corresponding filters weights is given in Appendix B. 

In Appendix C, a method is given for determining coefficients in 

the Fourier series representation of a function. Application requires 

that the series either be finite or the coefficients an and bn be 

negligible for large n, and that the samples of the function can be 

obtained at the required points. 

A reader interested only in the weight expressions and the 

applications may go directly to Chapter IV. 
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CHAPTER1 

CLASSICAL FOURIER ANALYSIS 

1.0 INTRODUCTION 

We shall give here some definitions and results from the classica. 

Fourier analysis. We shall not attempt to establish the Fourier inte- 

gral theorem and we refer the reader to [l] for a proof with integra- 

tion in the sense used here. The reader familiar with Lebesgue inte- 

gration will find a proof in [2]. 

There are several different forms of the Fourier integral theorem. 

The so-called complex form of the theorem states that if h(t) is a function 

of the real variable t, then 

h(x) e 
-2flif(x-t)dx 

provided h(t) satisfies one of the variety of sufficient conditions 

(see Section 1.2 for two such conditions). 

The results in this chapter are obtained again in the second 

chapter in a more general setting. Many of the restrictions placed on 

the functions in the classical theory are removed there. The duplica- 

tion is intentional and serves two purposes. First, for the reader 

not familiar with the Fourier transform,this chapter will serve as an 

introduction. Secondly, if the reader is willing to accept a few 

results from the second chapter, he can read this chapter and go 

directly to the third chapter and the applications. 

We shall use integration in the sense of Riemann and integration 

(1-o) 



will be over the entire real line. Furthermore, our functions can 

have a finite number of points of discontinuity at which they may be 

b'ounded 'or unbounded. Thus the integrals we encounter shall be 

improper Riemann integrals of the so-called "third kind'. 

1.1 IMPROPER INTEGRALS AND ABSOLUTELY INTEGRARLE FUNCTIONS 

Let h(t) be a function defined for all real t. We shall say that 

h(t) is integrable if h(t) has at most a finite number of points of 

discontinuity on the real line and the improper Riema.nn integral 

s 

co 
h(t) dt (1.1) 

-0) 

exists (finite). Thus if tl,t2,....., tn are points of discontinuity 

at which h(t) is unbounded, choosing a 
1 <tl -C a2 < t2 <a <t < . . . . 3 3 

. . . <a <tn <a n n+l, then (1.1) is the limit 

ad-c0 

if this limit exists, and we say that h(t) is integrable. The integral 

(1.1) is usually said to be convergent or divergent according to whether 

the above limit does or does not exist. Thus when we say that h(t) 

is integrable, we simply mean that h(t) has at most a finite number 

of points of discontinuity and the integral (1.1) is convergent. 

Suppose that h(t) is continuous at t . Then from the inequality 

1 Ih( - b(t,l 1 ,< (h(t) y h(to)l 

it follows that the function h(t) is continuous at to. The converse 

is not always true. A simple example is the function 
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h(t) 
f 

1 tso 
= 

-1 t>o 
. 

The function Ih( is con 

function h(t) has at most a 

then so does the function 

general. 

tinuous at t=O, but h(t) is not. Thus if a 

finite number of points of discontinuity, 

b(t) 1, but the converse is not true in 

We shall say that a function h(t) which has at most a finite num- 

ber of points of discontinuity is absolutely integrable if the function 

Ih( is integrable in the above sense, that is, the improper Riemann 

integral 

s 
OJ Ih(t)I dt 

-cm 
(1.2) 

exists. The continuity of (h(t)1 except at a finite number of points 

follows from that of h(t). This is sometimes expressed by saying that 

the integral (1.1) is absolutely convergent. Noting that 

- Ih( 5 h(t) 5 Ih( 

and adding (h(t) 1 to each member, we have 

0 5 h(t) + Ih( ,< 2 IW,l 

By (1.3) and the comparison test for integrals, the existence of 

(1.2) implies that the integral 

s 
* [h(t) + Ih( 1 dt 

-CO 
exists. But then we have that 

s 
* [h(t) + Ih( 1 dt - 

-a) s 
OD (h(t)ldt = 

-03 s 
a h(t)dt 

-a) 

3 
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and the integral (1.1) exists. This proves the following theorem. 

Theorem 1.10 If h(t) is absolutely integrable, then h(t) is integrable. 

The converse is not always true, for example, the function 

h(t) zzy 

is integrable, but it is not absolutely integrable. 

Special forms of other theorems on improper integrals apply here 

and we shall use them when needed. These theorems are found in most 

advanced calculus texts. Some other results for improper integrals 

containing a parameter shall be needed and we list these for easy 

reference. Proofs of these are usually found in advanced calculus 

texts also. 

Let h(t,S) be a function of t involving the parameter f3 and 

suppose that h(t,S) is integrable with respect to t for SII @ 5 S,, 

that is, h(t,S) has at most a finite number of points of discontinuity 

as a function of t and the improper integral 

s 
co 

Q(B) = h(t,B)dt (1.4) -co 
exists for all S in[ S,,S,]. The integral (1.4) is said to be uni- 

formly convergent in [Sl,S2] if for each, E > 0 there exists a number 

N(E) > 0 such that 

( Q'(B) - J-1 h(t,B)dt ( < E 

for all a,b > N(E) and all @ in [Bl,S2] . 

Theorem 1.11 Weierstrass M test. If there exists a function M(t) ,> 0 

such that 

(a) Ih(t,B) 1 5 M(t) for all t and all S in[ @,,@,I 
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(b) * 
s 

M(t)dt converges, 
-CO 

then h(t,@) is absolutely integrable with respect to t and the integral 

(1.4) is uniformly convergent in[Bl,B2]. 

Theorem 1.12 If h(t,p) is integrable with respect to t and continuous 

as a function of @ for pl_< p ,< @, and if (1.4) is uniformly conver- gent in [B,,B, 1 , then 
s 

co 
O(B) = h(t,B)dt 

-03 

is a continuous function of p on[@lJp2]. In particular, 

Theorem 1.13 Under the conditions of Theorem 1.12, the function Q(p) 

is integrable (in the proper sense)on[ ~,,/3,] and 

82 
Q(B)@ = 

1 
sf' dP j,m h(t,B)dt = f, dt L12 h(t,B)W, 

that is, the order of integration may be interchanged. 

Theorem 1.14 If h(t,@) is continuous as a function of the two variables 

t and B, B, ,< B ,< B2, and is integrable with respect to t, and if 

exists and is continuous with respect to /3, 

b) 
s 

O” 2kkp dt exists and is uniformly convergent in 
-0J 

[pl,p2] (and hence is continuous there), then the function 
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@(PI = I h(t,S)dt is differentiable in [ @,,S,] and 

s 

co 
OJ h(t,S)dt = 

s 
ah(t,B)dt 

-co -03 a@ 

1.2 THE FOURl3R TRANSFORM 

If the integral (1.0) exists, it can be written as 

co 
OD h(t) = 

s 
2lrift df [e 

s 
h(x) e -2fiifxdx 1 

-CO -Q) 

and letting 

s 

a, 
H(f) = h(t) e 

-2rciftdt 

-co 

we have 

s 

03 
h(t) = H(f) e2stiftdf 

-co 

(1.5) 

The function H(f) is called the Fourier transform of h(t). A 

sufficient but not necessary condition for the existence of (1.5) is 

that h(t) be absolutely integrable. To see this, we note that 

Ie -2niftl = 1, Ih(t) e-2nif't) = Ih( 

and h(t) absolutely integrable implies that h(t)e-2nift is absolutely 

integrable. Hence h(t)e -2Jrift is integrable for each f a.nd (1.5) 

exists. By Theorem 1.12, H(f) is continuous for all f. Also it can 

be shown that H(f) converges to zero as IfI + OJ (see [ 11 ). This 

condition for the existence of (1.5) is sufficient but not necessa.ry. 

The validity of (l.O), and hence of (1.6)) is a different 

(1.6) 
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matter. These are valid if h(t) is absolutely integrable and also 

satisfies one of the following conditions: 

(a) h(t) is of bounded variation on every finite interval. 

(b) h(t) is piecewise smooth on every finite interval. 

These conditions are sufficient but not necessary. 

If (1.6) holds, then h(t) is called the inverse Fourier transform 

of H(f). To denote that two functions are related by (1.5) and (1.6) 

we write 

h(t)-H(f) 

'The Fourier transform is the only type transform we shall use and no 

confusion should arise if we drop the word "Fourier" and speak of the 

lttransform of h(t)" and the llinverse transform of H(.f)". 

If we interpret the variable t as time, then the variable f is 

interpreted as frequency (cycles per second). Letting w = 2sf in 

(1.5) and (1.6) yields the following form of the transform pair: 

s 

co 
E(w) = h(t) eUiwtdt 

-CD 

s 

cm 
h(t) = (l/214 z(w) eiwtdw 

-02 

where E(w) = H(f) and w = 2nf is angular frequency. This form of the 

transform pair does not possess the symmetry of (1.5) and (1.6) due 

to the constant (1/2rr) appearing in the second expression. Symmetry 

can be obtained by multiplying the first expression by (21-r)-* and tak- 

ing a factor of (2n)-9 under the integral sign in the second, and then 

replacing (2~)~s E(w) by H(w) in both expressions. The forms (1.5) 

and (1.6) suit our purposes best and shall be used. The exponents 

+2nift are cumbersome and we shall use the notation 
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exp(x) = ex (1.7) 

which will avoid some notation problems and is somewhat more tractable. 

1.3 SPECIAL FORMS OF THE FOURIER TRANSFORMS 

In general, h(t) a.nd H(f) may be complex. If h(t) is complex, 

letting hi(t) and h2(t) denote its real and imaginary parts, we have 

h(t) = hi(t) + ih2(t) 

Using exp(-2aift) = cos 2nft -isin 25rft, from (1.5) we obtain 

H(f) = rrn[ h,(t) cos hft + h2(t) sin 2lrft ] dt 
J I -m 

s 

co 

-i 
-co 

[ hi(t) sin 2flft - h2(t 8) cos 2flft 

Thus H(f) = Hi(f) + iH2(f) where 

Hi(f) = 
s 

OD b&t) cos 21&t + h2(t) sin 2Jrft] dt 
-co 

s 

co 
H2(f) = - 

-Co 
[ hi(t) sin 2flf-t - h2(t) cos 2rtf-t 

dt 

In a similar manner, we obtain 

h&t) = J [ H&f) cos 2nft - H2(f) sin 2nftl df 
-03 

(1.8) 
dt 

h2(t) = s a, I: H&f) sin 2Jtft + H2(f) cos 2xft ] df 
-Co 

If h(t) is real, then h2(t) = 0 and hi(t) = h(t). Then the 

expressions (1.8) reduce to 

co Hi(f) = 
s 

h(t) cos 2fift dt 
-aJ 

(1.9) 

(l.lOa) 
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s 

m 
H2(f) = - h(t) sin 2rrft dt 

-CO 
(l.lOb) 

Replacing f by -f in (l.lOa)and (l.lOb) we see that 

H+-f) = Hi(f) and H2(-f) = -H2(f) (1.11) 

Therefore Hi(f) is an even function of f and H2(f) is an odd function 

of f. Then 

H(-f) = Hl(-f) + iH2(-f) = Hi(f) - iH2(f) 

and hence 

H(-f) = H*(f) 

Conversely, if H(-f) = H*(f), then 

J-.$(f) - iH2(f) = Hl(-f) + iH2(-f) 

~ and equating the real and imaginary parts we see that Hi(f) is even 

and H2(f) is odd. Then the integrand in the first integral of (1.9) 

is even and the integrand in the second is odd. Hence h2(t) = 0 and 

h(t) is real. Furthermore, 

h(t) = 2 
s 0 

co [H&f) cos 2nft - H2(f) sin 2nft] df 

A special case which we shall encounter later is when H(f) is 

real and even. Then (1.12) holds and putting H2(f) = 0 in (1.13) we 

obtain 

co 
h(t) = 2 H(f) cos 2rrft df 

(1.12) 

(1.13) 

(1.14) 

Another special case is when H(f) is purely imaginary and odd. 
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Then H(f) = iH2(f), H(-f) = -H(f) = -iH2(f) = H*(f) and (1.12) holds. 

Putting Hi(f) = 0 and iH(f) = i?H2(f) = -H2(f) in (1.13) we obtain 

0) 
h(t) = 2i H(f) sin 2xft df (1.15) 

If h(t) is, purely imaginary, then h(t) = ih2(t) and 

s 

03 
Hi(f) = h2(t) sin 2Jrft dt 

-02 

(1.16) 

s 

co 
H2(f) = h2(t) cos 25rft dt 

-co 

Thus Hi(f) is odd and H2(f) is even and 

H(-f) = Hl(-f) + iH2(-f) = -Hi(f) + iH2(f) = -H*(f) (1,.17) 

It is easy to show that the converse is true, that is, if H(f) is such 

that H(-f) = -H*(f), then h(t) is purely imaginary. 

1.4 SOME SIMPLZ THEOREMS 

We present here some simple theorems from the classical theory. 

These theorems will be restated in the second chapter in a more gen- 

eral setting and proved with less restrictive conditions. 

The following theorem is an immediate consequence of the linear- 

ity of integration. 

Linearity Theorem. If h(t) - H(f), g(t) - G(f) and if a,b are 

arbitrary constants, then 

ah(t) + Q(t) w aH(f) + bG(f) (1.18) 

Symmetry Theorem. If h(t) w H(f), then 

10 



H(t)Nh(-f) 

Proof: We have 

(1.19) 

s 

OD 

H(f) = h(t) exp(-2gift)dt 
-co 

Replacing f by t and t by -f gives 

s 

-03 

H(t) = h(-f) exp (-2nit(-f))(-df) 
co 

s 

a, 
= h(-f) exp(2zift)df 

-CO 

Scaling Theorem. If h(t)#H(f) and a is any non-zero rea.1 constant, 

then H(f/a) 
h(at)e ,", (1.20) 

Proof: We have 

s 

m 
H(f) = h(t) exp(-2fiift)dt 

-co 

and replacing f by (f/a) gives 

m H(f/a) = 
s 

h(t) exp(-2zift/a)dt 
-03 

Now let t = ax. Then dt = adx and if a > 0, 

s 

03 

H(f/a) = a h(ax) exp(-2Cfx)dx 
-00 

If a < 0, then the order of the integration is reversed and 

s 
-m H(f/a) = a h(ax) exp(-2aifx)dx 

s 

00 
= -a h(ax) exp(-2aifx)dx 

-03 

11 



Hence, for any a.# 0, 

H(f/a) = Ial SW h(ax) exp(-2kfx)dx 
-(73 

Replacing x by t and d.ividing both sides by Ial completes the proof. 

First Shifting Theorem. If h(t) *H(f) and to is a real constant, 

then 
h(t - to) - H(f) exp(-2Xitof) (1.21) 

Proof: We have 

h(t) = rrn H(f) exp(2xift)df 
J-w 

dnd replacing t by t - to gives 

h(t - t,) = rrn H(f) exp(2ltif(t - to))df 
” J -Q3 

s 

co 
= 

-00 
[H(f)exp(-2ktof) lexp(2lrift)df 

which proves the theorem. 

The following theorem is proved in a similar manner. 

Second Shifting Theorem. If h(t) -H(f) and f. is a real constant, 

then 

h(t)exp(2rrifot) wH(f - fo) (1.22) 

From (1.20), (1.21), and (1.22), we obtain 

h(at)exp(2nifot)* - l,'l H(' ; fQ) (1.23) 

h(at - to)- h H(g)exp(-2Ct,f/a) (1.24) 

12 



Also, letting a = -1 in (1.20) gives 

h(-t)V(-f) 

First Differentiation Theorem. If h(t) is continuous and tnh(t) is 

absolutely integrable, then 

(2xit)kh(t)wH (k)(f) 

(1.25) 

(1.26) 

for k = 0, 1, 2, . . . , n. [ H(')(f)- H(f)] = 

Proof: Let 

A= max 1(2fic>%(t) 1 
Itl 5 1 

and let 

M(t) = 

i 

A Itl I 1 
\@Jrt)rX(t)l ItI > 1 

By the continuity of h(t) on [ 1,-l], A is finite and tnh(t) is abso- 

lutely integrable by hypothesis. Thus the integral 

s 

03 

M(t)dt 
-03 

converges. Furthermore, for k = 0, 1, 2,...., n, 

I(-2rtit)kh(t)exp(-2nift)I = ((-2nit)kh(t)I _<M(t) 

for all t and all f. By the Weierstrass M test, the integral 

(1.27) 

exists and is uniformly convergent in f, k = 0, 1, 2,...., n. 

The integrand in (1.27) satisfies the conditions of Theorem 1.14 
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for k = 0, 1, 2,...., n-l, and hence 

s 

OD (-2rtit)kh(t)exp(-2srift)dt 
-CO 

= 

s 

O5 (-2rtit)k+1h(t)exp(-2fiift)dt 
-03 

For k = 0, Ho(f) = H(f) = H (O)(f) , and hence Hi(f) = H %L 

H2(f) = Hl (l)(f) = H(2)(f),......, H&f) = H(k)(f),......, H,(f) = H(n)(f). 

Finally, by the continuity and-absolute integrability of 

(2flit)kh(t) and the Fourier integral theorem, the inversion formula 

holds for k = 0, 1, 2,.....,'n. 

Second Differentiation Theorem. If h(t)wH(f) and 

(1) h(t) is continuous and converges to zero as ItI + (P, and 

(2) h (1) (t) is absolutely integrable, then 

(2nif)H(f) = 
s 

CO h(l) (t)exp(-2gift)dt (1.28) 
-05 

Proof: We have 

s 

03 

H(f) = h(t)exp(-2nift)d-t 
-CO 

Integrating by parts with 

u = h(t) 

du = h(')(t)dt 

dv = exp(-2flift)dt 

v = -(2nif)-lexp(-2fiift) 

we obtain 

H(f) = (2nif)-' [-h(t)exp(-2flift) (t)exp(-2Cft)dt] 
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and since h(t) + 0 as It\ d ~33, the first term in the brackets is 

zero. Multiplying both sides by (2Jrif), we obtain (1.28). 

If h(')(t) and h(2)(t) satisfy the conditions of the theorem, 

then integration by parts again yields 

(2fiif)2H(f) = 
s 

m h(2)(t)exp(-2srift)dt 
-CO 

Continuing in this manner, if h (")(t) and h(n+l)(t) satisfy the con- 

ditions of the theorem, we obtain 

(27tif) n+lH(f) = 
s 

a3 ,cn+') (t)exp(-2nift)dt 
-03 

Then for k 5 n, h (k)(t) satisfies conditions sufficient for the 

inversion formula to hold, and we obtain 

Conjugate Function Theorem. If h(t)-(f), then 

h*(t)MH*(-f) 

Proof: With h(t) = hi(t) + ih2(t), we have 

H(f) = 
s 

=i hi(t) + ih2(tJ ]exp(-23~ift)dt 
-co 

and with H(f) = Hi(f) + iH2(f) and equations (1.8) 

H*(f) = 
s 

al: 0 hl t cos 2aft + h2(t)sin 2cft ] dt 
-CO 

(1.29) 

(1.30) 

+i 
s 

w [ h&t) sin 2rtft - h2(t)cos2Jrft] dt 
-a0 
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= 

s 
co [hi(t) 7 ih2(t) 

-CO 
] [ cos 2rrft + i sin 27fft 

= 
J 

h*(t) exp(2zift)dt 
-Co 

1 dt 

Replacing f by -f shows that H*(-f) is the transform of h*(t). The 

validity of the inversion formula can be verified similarly, starting 

with 

s 

aa 
h(t) = H(f) exp(2nift) df 

-CO 

1.5 The Convolution Theorems. 

Second only to the transform and inverse transform, the convolu- 

tion theorems are the most powerful tools in Fourier ahalysis. These 

theorems in their generalized form play a central role in filter 

theory. 

Let g(t) and h(t) be functions of a real variable t, and let 

If this 

and h(t 

z=t- 

integral exists, then q(t) is called the convolution of g(t) 

. This is usually denoted by writing q(t) = (g++h)(t). By letting 

x in (1.31) it is easy to show that the convolution is c oInmu- 

tative, that is, 

s 
co 

q(t) = dx)h(t - x -a )dx (1.31) 

(g*h)(t) = (h*cg)(t) (1.32) 

Also, from the 1 .inearity property of integration, it follok,s that 

(g* bl+h2 I l(t) = (g+hl + g*h2)(t) Cl.331 

The following theorem is valid when g(t) and h(t) are absolutely 
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- 

$2’ 
I 

integrable. The proof is not difficult, but it is long and will not 

be given here. 

Time Domain Convolution Theorem. If h(t) and g(t) are absolutely 

integrable and H(f) and G(f) are their Fourier transforms, then the 

convolution q(t) = (g*h)(t) is also absol,utely integrable. Further- 

more, Q(f) = G(f)H(f). 

Under the conditions of the theorem, a change in the order of 

integration is justified in 

Q(f) = 11 dt [exp(-2rrift) l, g(x)h(t-x)dx] 

Hence 

Q(f) = 1, dx. [g(x) s, h(t-x)exp(-2sift)dt 1 
Using (1.21) we obtain 

s 

co 
Q(f) = g(x)[H(f)exp(-2nifx)]dx 

-0 

s 

m 
= H(f) g(t)exp(-2aift)dt 

-m 

= H(f)G(f) 

The conditions of the above theorem are sufficient but not 

necessary. If, in addition to the conditions of the theorem, q(t) 

is bounded on every finite interval, the inversion formula holds and 

we have 

(g&)(t) -(f)H(f) 
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If( 1.34) holds, the following theorem follows from the symmetry 

property (1.19). 

Frequency Domain Convolution Theorem. If g(t)-(f) and 

h(t)NH(f), then 

Parseval's Formula. If (1.35) holds, then 

s 

co 

s 

co 
dt)h(tkt = G(f)H(-f)df 

-CD -03 

(1.35) 

(1.36) 

Proof. From (1.35) we have 

(G*H)(f) = 
s 

OD G(x)H(f-x)dx = OJ g(t)h(t)exp(-2nift)dt 
-co s -03 

and (1.36) follows by letting f = 0 and replacing x by f in the first 

integral. 

Note that if h(t) is real, then by (1.12) we have H(-f) = H*(f) 

which gives 

s 

02 

s 

03 

g(t)h(t)dt = G(f)H*(f)df 
-CD -co 

Letting g(t) = h*(t), from (1.30), G(f)=I-J?(-f) and we have 

s 
m lh(t)12dt = OD H*(-f)H(-f)df = Q) (H(f)12df 

-00 s -03 s -03 

If we write H(f) in polar form, 

(1.37) 

- 

H(f) = A(f)exp(ifJ(f)) (1.38) 
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then the real function A(f) is called the Fourier spectr& of h(t), 

A2(f) is caLled the energy spectrum of h(t), and G(f) its phase arkle. 

From (1.38) we have IH( = A2(f), and thus (1.37) can be written 

s 
o Ih(t)(?dt = 

s 
OJ 2 A (f)df (1.39) 

-0D -a) 
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WAFTER II 

GENERALIZED FUNCTIONS AND THEIR FOURIER TRANSFORMS 

2.0 INTRODUCTION 

Several approaches to the definition of a digital filter are 

possible. In the choice of approach, one is influenced by purpose 

and background. The approach we choose here requires the Dirac delta 

function and some of its properties. This is not proposed to be the 

shortest or easiest way of arriving at the definition of a digital 

filter, but it is proposed as one of the clearest and most meaningful 

approaches. 

The Dirac delta function 6(t) is often defined by one of the 

following statements: 

(A) If g(t) is a continuous function at t = t 
0’ 

then 6(t) 

has the property that 

s 

co g(t) G(t-to)dt = g<to); 
-co 

(B) 6(t) = 0 if t # 0, and 

s 

co 
6(t) dt = 1; 

-Co 

(C) 6(t) = nls co g,(t) where {g,(t)] is a sequence of 

functions satisfying the conditions 

(i) if t # 0, then nls o3 g,(t) = 0, and 

(ii) co 
s 

gn(t)dt = 1. 
-03 
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These definitions are meaningless if we attempt to think of 6(t) as 

a function in the ordinary sense. By introducing the delta function 

as a new concept, a generalized function, (A) can be given a precise 

meaning, but definitions (B) and (C) do not uniquely describe 6(t). 

There is no shortage of theories to justify (A). One particu- 

larly suited to our purposes is given by Lighthill [3]. The develop- 

ment is similar to Cantor's extc-n:;ion of the rational numbers to the 

real numbers, an analogy we shall return to after making a definition 

and some comments. 

Definition 2.00 A function g(t) of the real variable t 

test function if 

is called a 

(i) g(t) is everywhere differentiable any number 

of times, and 

(ii) g(t) and all of its derivatives are O((t(-N) 

as ItI+ m for all integers N. 

As a reminder, the 'big 0" notation, g(t) = O(h(t)) as t----3 a, 

means that there exists a positive constant A s,<ch that 

\g(t)( <A(h(t)( as t+ a. 

We shall denote the set of all test functions by S. Each g(t) in 

S is a function of the real variable t, but these functions may be 

complex-valued. Note that the function g(t) = 0 is in S, and S is non- 

empty. A non-trivial example of a function of S is g(t) = e -t2 . We 

note that Lighthill calls the functions of S "good functions" but the 

terminology we have adopted 

changes in tcrminoiogy will 

is more commonly used. Some other minor 

be made. 
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Cantor extended the rationals to the reals by using equivalence 

classes of Cauchy sequences of rational numbers. The set analogous to 

the rationals in Lighthill's development is the set S of test functions. 

Cantor's scheme was as follows: Let R denote the set of rational num- 

bers and let 

C = I b-,3 1 Ir,) is a Cauchy sequence of rationals) 

Define a relation on C as follows: If (r,) and{sn} are elements of C, 

then (r,)rv {sn} if and only if I,lim, Q) (rn-sn) = 0. That is, the 

sequence of rational numbers (r,-s,] must be null. It is easy to show 

that k) is an equivalence relation and hence partitions C into dis- 

joint subclasses, called equivalence classes. Let 

E = ( r 1 r is an equivalence class determined by ru}, 

then the elements of E are called real numbers, and E is called the set 

of real numbers. If r and s are real numbers, their sum and product 

are defined as follows: Let (r,} be a sequence of r and {s,} be a 

sequence of s. Then r+s is the subclass of C containing (rn+sn} and 

rs is the subclass of C containing {rnsn}. Of course, it is necessary 

to show that {r +s 
n n 

) and {r,s,] are Cauchy and that r+s and rs are 

uniquely determined, that is, if (r:] and {s;] are in r and s, then 

the subclasses determined by (rA+sA} and {r:sA) are the same as those 

determined by {rn+sn} and {rnsn]. The various field axioms are veri- 

fied next. Finally, the mapping T defined on R by writing 

T(a) = {a,a,a,....,a,....] = a in 8, a in R, 

embeds R in E. 
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An outline of Lighthill's construction of the set of generalized 

functions from the set S of test functions is as follows (new terms are 

defined later): With S the set of all test functions, let 

C={ k,(t)1 I knW is a regular sequence of test functions} 

Introduce an equivalence relation m on C by writing {g,(t)) ru .(h,(t)} 

if and only if 

Q) al 

n lim, co s 
g&t)H(t)dt = ,ls oD 

s 
f$t)H(t)dt 

-CO -03 

for all H(t) in S. Let 3 be the set whose elements are the equivalence 

classes determined by the relation-. An element of 2 is called a 

generalized function. Let g and h be generalized functions and let 

(g,(t)) be a sequence of g and (hn(t)} be a sequence of h. Define the 

sum g+h to be the generalized function (subclass of C) determined by 

the sequence ((gn+hn)(t)), where (g,+h,)(t) = g,(t) + h,(t) for all t. 

For any complex number a, define ag to be the generalized function 

determined by ((agn)(t)], where (ag,)(t) = agr,(t) for all t. Show 

that these definitions are consistent, that is, show that each sequence 

above is regular and that the definition is independent of the choice 

of (g,(t)} in g and Ih,(t)} in h. Next, show that 5 with this sum and 

product of a complex number and a generalized function is a linear 

(vector) space. Finally, embed S in 5. 

An alternate approach is found in functional analysis. There, a 

generalized function F is a continuous linear functional on the linear 

space S of test functions, that is, F is a mapping of S into the complex 

numbers such tha.t 

F(ag+bh) = aF(g) + bF(h) 
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for all g,h in S and all complex numbers a and b. Of course, the use 

of the word continuous implies that either a topology is explicitly 

given on S or that convergence in some sense is defined there. 

As indicated, we will not use the last approach. However, some 

notation and terminology from this approach will be helpful in inter- 

preting some definitions and results. 

2.1 THE TEST SPACE S 

Let V be a set with an operation(+) called addition defined on 

it and let R be a field (usually the real or complex numbers). V is 

called a linear space over R if 

(i) V is a commutative group with respect to +, 

(ii) for each a in R and each x in V a product ax 

is defined such that ax is in V and for all 

a,b in R and all x,y in V, 

a) a(bx) = (ab)x 

b) a(x+y) = ax + ay 

c) (a+b)x = ax + bx 

d) lx = x where 1 is the multiplicative 

identity of R. 

A linear space over R is often called a vector space over R. The 

elements of R are called sca.lars and the operation ax is usually called 

scalar multiplication. The classical example of a linear space is 

n-dimensional Euclidean space. 

The set S of all test functions is a linear space with respect to 

addition and scalar multiplication defined by 
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(g+h)(t) = g(t) + h(t) 

(ad(t) = adt> 

and S is called a test space. 

The functions of S are very "well-behaved" as is implied by 

Lighthill's terminology "good functions'!. Some of the "good" proper- 

ties of these functions are 

(i) they are everywhere continuous on the real line, 

(ii) they are absolutely integrable on the real line, 

(iii) they are of bounded variation on every finite interval, 

(iv> they are squa.re integrable. 

In fact, each g in S satisfies conditions sufficient for the existence 

of its Fourier transform and for the inversion formula to hold. Every 

result and theorem of Chapter I applies to functions of S since in 

each case these functions satisfy sufficient conditions. Thus we can 

apply the results of Chapter I to test functions without restrictions 

of any sort. 

It is convenient to adopt a notation to denote the operation of 

taking the transform and inverse transform of a function. For a test 

function, g, we shall see later that the transform and inverse transform 

of g are both in S, and hence the operations of taking transforms and 

inverse transforms ca.n be thought of as mappings of S into S. We let 

F denote the operation of taking the transform, 

CD 
F(g) = 

s 
g(t)exp(-2flift)dt 

-00 

and let F -1 denote the operation of taking the inverse transform, 
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s 

Q) 

F-'(g) = g(f)exp(2zift)df. 
-Co 

We shall use the symbol nf" to denote a real variable called frequency, 

and this symbol shall not be used to denote a function. The functions of 

S may be thought of as functions of f, or of t, the symbol used for the 

real variable being immaterial. 

If g(t) is a function such that g(t)h(t) is in S for all h(t) in 

S, then g(t) is called a multiplier on S. Clearly, every constant 

function is a multiplier on S. 

Let M denote the set of all functions m(t) which are everywhere 

differentiable any number of times and such that m(t) and all of its 

derivatives are O(ltlNo) as Itl-a for some integer No. We show 

that every function of M is a multiplier on S. 

Theorem 2.10 If m(t) is in M and h(t) is in S, then m(t)h(t) is in S. 

Proof: We have 

ap(dt>h(t)) _ 
dtP 

i (p)m(j)(t)h('-j)(t) 
j=O 

It suffices to show each term in the right side is in S. From the 

definition of M, we have that there exist numbers A > 0, K > 0, and 

an integer N such that 

1 ,(J) (t) ] < AltIN for all t such that It\ > K. 

From the definition of S, we have that if N’ is any integer, then there 

exist numbers A' > 0, K' > 0 such that 
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I,('-j)(t)\ < A'\tl-N' for all t such that ItI > K'. 

Then for all t such that ItI > max {K,K'), 

(m(j)(t)h('-j)(t)! < AA'ItlN-N' 

But N-N' is arbitrary because N' is arbitrary. Thus m(t)h(t) is in S. 

Note that if a function is contained in one of the sets M or.L-3, 

then every derivative of that function is contained in the same;set. 

Thus, if m(t) is in M and h(t) is in S, then m (j)(t)h(k)(t) is in S for 

all integers j,k > 0. A familiar class of functions contained in M is 

the set of all polynomials. 

The following theorem lists some of the properties which the 

functions of S possess. 

Theorem 2.11 If h(t) is in S, then 

(i) F(h) = H(f) is in S 

(ii) F-'(h) = g(t) is in S 

(iii) h(-t) is in S 

(iv) h*(t) is in S 

(v) h(at+b) is in S, a,b, constants, a # 0. 

Proof: For part (i), note that the conditions of Theorem 1.14 are 

satisfied by 

s 

co 
H(f) = h(t)exp(-2nift)dt 

-03 

and each of the derivatives H (P)(f). Also, we may integrate by parts 

repeatedly. Differentiating p times and integrating by parts n times, 

we have 
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IH( = 1(2~if)-~ 
s 

-1 s((12nit)Ph(t)) exp(-2nift,)dt\ 

< OP’n 
s 

O” 
- IfIn 

1 dn(tPh(t )) 1 dt 
-co dtn 

Now tPh(t) is in S by Theorem 2.10, and hence the nth derivative of 

tPh(t) is in S. Thus the integral on the right side above exists and 

is finite, and we have 

H(')(f) = O(l'fl-n). 

Part (ii) is proved by replacing exp(-2Cft) by exp(2srift) and inter- 

changing the roles of f and t in the proof of (i). 

For part (iii), if we let h(t)+ -*X(f), then by (i), both H(f) = 

F(h) and the function 

03 
F(H) = 

s 
H(f)exp(-2fiift)df = h(-t) 

-CD 

are in S (see(l.19)). 

For part (iv), we have that h(t) is everywhere differentiable any 

number of times, and it is obvious that h*(t), the complex conjugate of 

h(t), also has this property. To complete this part, all we need do 

is note that Ih (")(t)l = \h*(n)(t)( for all nz 0. 

To show the last part, let m be a non-negative integer and N be 

any positive integer. Then there exist numbers Am > 0, Km > 0 such 

that for all t such that ItI > Km, 

Ih(m)(t)\ < A,\t\-" . 
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Letting g(t) = h(at+b), we have g(t) differentiable any number of times 

and for all t such that lat+b\ > K m' 

Ig(m)(t)( = (amh(m)(at+b)l 

< \a\mAmlat+bl-N 

= \alm-NAm(t,+ (b/a)lmN 

Note that it suffices to show that It +(b/a)l-' = O(\tl-'). To do this, 

let c = b/a. and choose t such that It\ > 21~1. Then Ic/tl < l/2, and 

-l/2 < c/t < l/2. Adding 1 to each member of this inequality gives 

i/2 -c i + c/t c 312, or taking reciprocals, 2/3 < l/(l+c/t) < 2. Thus 

and hence 

I- t I-, t+c 

Finally, for all t such 

or It + cl-' < 2ltl-', and hence 1-t + cleN < 2Nltl'N for \t\ > 21~1. 

I > 2)c\ and lat+bl > K m' 
we have 

\t + clwN < 2Nlalm-NAm(tl-N , 

that It 

IalrnmNArn 

which completes the proof. 

2.2 GENEFULIZED FUNCTIONS 

We now define the class of sequences of functions of S which play 

29 



a role in the construction of generalized functions similar to that of 

the Cauchy sequences of rational numbers in the construction of the 

real numbers. 

Definition 2.20 A sequence (g,(t)) of test functions is called regular 

if the limit 

s 

co 
n’irq co g&t)G(t )dt 

-Co 
(2.00) 

exists and is finite for all test functions G(t) in S. 

We denote by C the class of all regular sequences and note that C 

is not empty since 

s 

m 

n l-% CD exp(-t2/n2)G(t)dt 7 
s 

00 

n s Q) {exp(-t2/n2)}G(t)dt 
-co -CO 

(2.01) 

s 

03 
= G(t)dt 

-co 

and hence the sequence (exp(-t2/n2)) is regular. 

Definition 2.21 A sequence (hn(t)] in C is said to be equivalent to 

the sequence {g,(t)) in C, denoted by writing {h,(t)) cv {g,(t)), if 

a.nd only if 

co co 
n la* s 

hn(t)G(t)dt = nls o) 
s 

g&t)G(t)dt 
-CD -CO 

for every G(t) in S. 

The limits and the integrals in the above definition exist, so we 

could rewrite the condition for equivalence as 
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- 

n’s co s 
a (h,(t) - +)lG(t)dt = 0 

-a 

for every G(t) in S. This resembles the null condition taken in the 

construction of the rea.ls. 

The relativn k, is clearly an equivalence relation, that is, we 

have 

(i) (h,(t)) err (h,(t)) f or all regular sequences, 

(ii) if (h,(t)) -*{g,(t)3, then (gn(t)} - Ih,(t)), 

(iii) if Ih,(t)) - (g,(t)) and {e,(t)) - (k,(t)), then 

bn(t)3 - tk,(t)j. 

Thus m partitions C into disjoint subclasses, the equivalence classes 

determined by m . We let 2 denote the collection of all the sub- 

classes of C determined by m . 

Definition 2.22 An element s of ?!!! is called a generalized function. 

Thus a generalized function is a class of equivalent regular 

sequences, that is, if (s,(t)) is regular, then the class s of all 

regular sequences equivalent to {s,(t)) is a generalized function. A 

sequence {s,(t)} in the class s is called a representative of the 

generalized function s. 

Note that if s is a generalized function, then the limit, 

s 
co 

n lim, m +)G(t)dt, 
-0) 

is a complex number whose value is independent of the choice of repre- 

sentative {s,(t)) of s. However, the limit does vary with G(t) in S. 
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This leads us to make the following definition. 

Definition 2.23 Let s be a generalized function and let (s,(t)} be a 

representative of s. Then for each G(t) in S, we define 

s 

03 
s(G) = &a co s&t )G(t kJ-t (2.02) 

-0D 

We now see that a generalized function s can be thought of as a 

mapping of the set S into the complex numbers (see Figure 2.1). We 

shall use this interpretation and the mapping notation in preference * 

to the "integral" notation used by Lighthill, the latter being somewhat 

confusing at times. 

FIGURE 2.1 

As an example, let I denote the generalized function with repre& 

sentative (exp(-t2/n2)), then from (2.01) and above we have that 

I(G) = rm G(t)dt, 
J -co 

and hence I is a mapping which maps each G (t) in S onto its integral 

over the interval (-m,m). 
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Let r and s be generalized functions and let Ir, ,(t)l and Is,(t)) 

be representatives of r and s, respectively. Thinking of r and s as 

sets, to say that r and s are equal means that r and s are the same 

subclass of C. Hence the representatives of these generalized functions 

must be equivalent because they belong to the same class, and we have 

that for every G(t) in S, 

s 

a, 
r(g) = nla o. rn(t)(=(t)dt 

-co 

= s(G) 

But this is the familiar requirement for writing r = s where r and s 

are interpreted as mappings of S into the complex numbers. Hence it 

is clear that if r and s are generalized functions, then r = s if and 

only if r(G) = s(G) for every G(t) in S. 

Definition 2.2b Let r and s be generalized functions and let (r,(t)) 

and (sn(t)) be representatives of r and s, respectively. 

(i) The sum of the generalized functions r and s, denoted 

by r+s, is defined to be the generalized function with 

representative (r,(t) + s,(t)]; 

(ii) The derivative of the generalized function r, denoted 

by r', is defined to be the generalized function with 

representative (r:(t)}; 
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(iii) ra,b is defined to be the generalized function with 

representative (rn(at+b)); 

(iv) For each m(t) in M, the product mr is defined to be the 

generalized function with representative (m(t)r,(t)); 

(v) The Fourier transform F'r of the generalized function 

r is defined to be the generalized function with repre- 

sentative (F(r,)). The inverse Fourier transform F"r 

is defined to be the generalized function with repre- 

sentative (F-l(r,)). 

We must show that these definitions are consistent, that is, we 

must show that each one uniquely determines a generalized function. 

To do this, we show that 

(a) each sequence named is a sequence of test functions, 

(b) each sequence named is regular and hence defines a 

generalized function, and 

(c) that the definitions are independent of the choice 

of representatives of r and s, that is, the generalized 

functions defined are unique. 

Part (a) follows from previous remarks and Theorems 2.10 and 2.11. We. 

now verify (b) and (c) for each part of the definition. 

Part (i) Let G(t) be in S. Then 

n s 
OD lirq a, -03 

(rn(t)+sn(t))G(t)dt = ,lim, oD 
s 

cD {rn(t)G(t) +s,(t)G(t)ldt 
-03 

s 

CD 
m(t)G(t)dt + +)G(t)dt; 

-CO 2 

34 



s 

03 
= 

n 1% co m(t)G(t)dt 
-02 

(2.03) 

s 

02 

+ nl* OD s&t)G(t)dt 
-co 

Now each limit in the last line on the right exists and is independent 

of the.choice of representative of r and s. Hence the limit on the 

left side exists and is independent of the choice of representatives 

b-,(t)) and (s,(t)). This verifies (b) and (c). 

In terms of the notation (2.02), (2.03) yields 

(r+s)(G) = r(G) + s(G) 

for all G(t) in S. Thus r+s is just the sum of the mappings r and s. 

Part (ii) With U = G(t) and dV = rA(t)dt, integrating by parts one 

time, we have 

s 
02 

rA(t)G(t)dt = rn(t)G(t) r,(t)G(t)dt 
-CD 

(2.04) 

s 

03 
= - rn(t)G'(t)dt 

-Co 

Letting nd OJ in both sides, since {m(t)) is regular and G'(t) is in 

S, the limit in the right side exists and is independent of the repre- 

sentative Cm(t)) of r. Thus the left side has the same properties. 

In our adopted notation, letting nd 03 in (2.04) yields 

r’(G) = -r(G') (2.05) 

for all G(t) in S. 
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Part (iii) By.making a change of variable,-we have for each m(t), 

s 
O" rn(at+b)G(t)dt = Ial-1 srn rn(t)G((t-b)/a)dt (2.06) 

-03 -0D 

By (v) of Theorem 2.11, G((t-b)/a) is in S. Since {r,(t)) is regular, 

the limit as n----3 0~ of the right side exists and is independent of the 

choice of the representative of r. Therefore, the left side als'o has 

these properties. 

Letting z(t) .= G((t-b)/a) and taking the limit in both sides of 

(2.06) yields 

rat,(G) = r(6) 

for a.11 G(t) in S. 

Part (iv) This part follows easily from 

s 
m (m(t)rn(t)}G(t)dt = 

s 
m r,(t)h(t)G(t))dt, 

-Co -CO 

(2.07) 

(2.08) 

noting that (m(t).} is regular, m(t)G(t) is in SI and letting n+ CC 

in both sides. In the mapping notation, we have that for every G(t) 

in S, 

mr(G) = r(m*G) (2.09) 

where m-G is the ordinary function (m-G)(t) = m(t)G(t). 

Part (v) Recall that for ordinary functions if h(t) -H(f) and 

g(t)-(f), then by (l-19), H(t) -f&f); by (l-25), 

h(-t)WH(-f); and by Parseval's formula (1.36), 
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03 co 

g(t)h(t)dt = G(f)H(-f)df. 

Using (1.19) and (1.23), several different forms of Parseval's formula 

are obtained. One form of interest to us here is 

s 

co 
g(t)h(-t)dt = 

-03 s 

a, 
G(f)H(f)df. (2.10) 

-03 

In what follows, we shall not assume a fixed role for the variables 

f and t as has been previously taken. We have to this point written 

the transform as a function of f and the inverse transform as a function 

of t. However, the roles of f and t are interchangeable in (1.5) and 

(1.6). That is, whether we have the transform or the inverse transform 

is determined by the sign of the exponent in the integrals of (1.5) and 

(l-6), not on the manner in which the variables are denoted. 

Parseval's formula is valid for test functions, and hence if H(f) 

is in S and h(t) NH(f), then h(t) is in S and from (2.10) we have 

s 

03 
F(rn)H(f)df = 

-03 s 

OD 
rn(t)h(-t)dt (2.11) 

-a3 

By interchanging the roles of f and t in (1.19) and using (iii) of 

Theorem 2.11, we have h(-t) = F(H) is in-S. The sequence (m(t)) is 

regular, so the limit as II- QJ in the right side of (2.11) exists and 

is independent of the representative of r. Hence the limit of the left 

side exist and is independent of the representative of r. In the map- 

ping notation, this yields 

s 

02 
l+(H) = nlim, co F(rn)H(f)df 

-Co 
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s 

03 

= n’s co rn(t)h(-t)dt 
-03 

s 
a, 

= n’s m rn(t)F(H)dt -CO 

(2.12) 

= r(F(H)), 

that is, the image of H under Fr is the same as the image of F(H) under 

the mapping determined by r. 

For the second part, we consider the functions of the represent- 

ative sequence of r as functions of the variable f. Then F-'[r,) is a 

function of t for each n, and by Parseval's formula, 

s 

co 
F-l(r,)h(t)dt = 

-CO s 

co 
rn(f)H(-f)df (2.13) 

-0) 

For each h(t) in S, H(f) = F(h) is in S. Thus so is H(-f), and letting 

nd ~0 in both sides of (2.13) shows that F -1 r is a uniquely determined 

generalized function. 

Now, by (1.25), H(-f) = F(h(-t)), and by making 

variables in (1.5), we find that F(h(-t)) = F-'(h). 

notation, this yields that for all h(t) in S, 

a change in the 

In the mapping 

s 

co 
F-'r(h) = ,la a, F-'(rn)h(t)dt 

-CD 

s 

m 

= la co rn(f)H(-f)df 
-03 

(2.14) 

= ,s co -1 rn(f)F-l(h)df 
s 

= r(F-l(h)). 
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This gives an interpretation of F -1 r similar to the one for Fr above. 

Applying F 
-1 to (2.l3), applying F to (2.1b),and noting that 

F(F-l(H)) = H = F-+F(H)) f or all H in S, we have that for each r in 

3, 

F-%'r(H) = F-'r(F(H)) = r(F-'(F(H)))= r(H); 

FF-lr(H) = Fr(F-l(H)) = r(F(F-l(H)))= r(H). 

Thus we see that if F is thought of as a mapping of 5 into itself, then 

F-l is the inverse mapping of F, that is, 

FF-l = IS = F-l-F 

where Is is defined by IS(r) = r for all r in 8. 

We have already noted that every constant function m(t) = a is in 

M and thus if r is a generalized function, by Definition 2.24, part 

(iv>, a.r is a generalized function. In part (i) of the same defini- 

tion, a sum is defined on 2. It is easy to verify the following 

theorem. 

Theorem 2.20 The set 2 of all generalized functions with addition as 

defined in (i) of Definition 2.24 and with scalar multiplication 

defined by letting m(t) = a in (iv) of Definition 2.24 is a linear 

space over the complex numbers. 

We have already noted that each generalized function in's deter- 

mines a mapping of the space S of all test functions into the complex 

numbers. Such a mapping is usually called a functional. We now show 

that these functionals are linear. 

Let r be in 3 and let (r,(t)} be a representative of r. Then if 
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G(t) and H(t) are elements of S, and a,b are complex numbers, we have 

s 02 
r(aG+bH) = nla oD 

-co 
m(t)[aG(t)+bH(t))dt 

03 Q) 
= a- 

n l=+- 03 s 
m(t)G(t)dt + b* nls 01 s 

r,(t )H(t )dt 
-03 -Q) 

= a-r(G) + b-r(H) 

Hence the mapping determined by r is a linear functional on S. 

Note that by reapplying part (ii) of Definition 2.24 to the 

derivativer' of r, we obtain r" = (r')'; the second derivative of the 

generalized function r (note that the proof of consistency is valid 

with m(t) and r:(t) replaced by r;(t) and r:(t), respectively). In 

fact, since each function of the sequence {m(t)} representing r is 

differentiable any number of times, we may reapply part (ii) and its 

proof of consistency any number of times. Thus, by induction, the kth 

derivative of a generalized function is defined, and we see that every 

generalized function has derivatives of all orders. We denote the kth 

derivative of r by the symbol r (k)* 

We have shown that every generalized function r has a Fourier 

transform s = Fr. Applying F -1 to both sides, we have F -1 s = F-l-&- = 

IS(r) = r, and the generalized functions r and s form a transform pair. 

In the notation of the first chapter, we have r+--+s. 

Theorem 2.21 Let r be a generalized function and let s be its Fourier 

transform, that is, r-s. Then 

40 



(i) +---+=10 (2.15) , 
(ii) ra bt--3ial-1exp(2nibf/a)sl,a o 

(iii) r(') <-q2flif)ks, k = 1,2,3,.1.... 

(2.16) 

(2.17) 

(iv) (23fit)kr- lk) ,. k = 1,2,3,...... (2.16) 

Proof: We shall prove part (iv). The proofs of the other parts are 

done in a similar manner. 

Let {r,(t)) be a representative of r. Then by part (v) of Defi- 

nition 2.24, (s,(f)) where 

sn= F(m) , n = 1,2,3,...... 

is a representative of the generalized function s. Each s,(f) is a 

test function and (1.26) holds. Thus, $4 = 
n F((2rrit)krn), n = 1,2,3,...... (2.19) 

By part (iv) of Definition 2.24, the sequence {(2flit)krn(t)} represents 

the generalized function(2nit)kr. From part (ii) of Definition 2.24 

and the comments preceding this theorem, the sequence 1s (nk)(f)) repre- 

sents the generalized function s (k). Therefore, by (2.19) and part 

(v) of Definition 2.24, 

(2rrit)kr2- (k) , k = 1,2,3,...... 

Let h(t) be an ordinary function having the property that h(t)G(t) 

is integrable on (-a, 0) for every G(t) in S, and write 

s 

m 
ii(G) = h(t)G(t)dt (2.20) 

-co 

It is easy to see that this defines a linear functional on S, for if 
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a and b are complex numbers and G(t) and H(t) are in S, then from the 

linearity of integration; we have that 

E(aG+bH) = a?;(G) + bx(H) . 

This naturally leads to the question of whether or not the ordinary 

function h(t) determines a generalized function in the above manner. 

To answer this, we must determine if there exists a generalized func- 

tion 1 such that if [h,(t)) is a representative of T;, then 

co co 
?i(G) = ,lim, m 

s 
hn(t)G(t)dt = 

s 
h(t)G(t)dt. 

-CD -03 

Lighthill, [3], pp. 22-23, shows that if h(t) is an ordinary function 

such that (l+t2)-Nh(t) is absolutely integrable on (--,a) for some integer 

N, then there exists a regular sequence {h,(t)] such that for all G(t) 

in S, 

s 

a3 a3 

n ii-Is co hn(t)G(t)dt = 
s 

h(t)G(t)dt, 
-CO -CD 

where the integral on the right side exists in the ordinary sense 

because 

s 03 
h(t)G(t)dt = 

s 
u) {(l+t2)-Nh(t))((l+t2)NG(t)) dt, 

-IX -Co 

with (l+t2)-Nh(t) absolutely integrable for some N and (l+t2)NG(t) 

a test function. It is easy to see that the set of all such functions 

h(t) forms a linear space K and that K is embedded in 3 by the map- 

ping Q which maps each h(t) onto the class of all sequences equivalent to 

{h,(t)} (see Figure 2.2). 
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P 
- 

Definition 2.25 If h(t) is an ordinary function such that (l+t2)-Nh(t) 

is absolutely integrable, then the image under 0 of h(t)'in 2 is called the 

generalized function defined by h(t) and is denoted by the symbolx. 

Figure 2.2 

Let h(t) be an ordinary function which defines a generalized 

function X. We already know that the generalized function 'i; has a 

generalized derivative (5)'. Suppose that h(t) is differentiable and 

that h'(t) defines a generalized function(h'. Then we have the 

following theorem. 

Theorem 2.22 Let h(t) and h'(t) be ordinary functions which define 

generalized functions % and m), respectively. Then the generalized 

functions (x)' and (h') are equal. 

Proof: From (2-O?), we have that for the generalized function ?i and 

(m', 
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(E)'(G) = -x(G') for all G(t) in S. 

Now h'(t) defines (h') by 

m(G) =' 
s 

'OD h'(t)G(t)dt, 
-CO 

We note that it suffices to show that (h3(G) = -x(G') for all G(t) in S. 

Due to the conditions on the ordinary function h(t) and h'(t), each of the 

integrals 

s 

co m co 
h'(t)G(t)dt, 

s 
h(t)G(t)dt , and 

s 
h(t)G'(t)dt 

-co -03 -03 

exist (finite). Integrating the first by parts, we have 

s 

co 
h'(t)G(t)dt = $3 ~ h(t)G(t) h(t)G'(t)dt. 

-Q) 

Hence 

b's OD h(b)G(b) and a 1% oD h(-a)G(-a) 

s 

m 
must both be finite. But the existence of the integral h(t)G(t)dt 

-CO 
implies that both limits are zero. Therefore 

m(G) = Jrn h'(t)G(t)dt = - J- h(t)G'(t)dt = -x(G') = (x)'(G) 
-CO -Co 

for all G(t) in S, and hence (h') = (;)I. 

Theorem 2.23 If h(t) is an ordinary function which is absolutely 

integrable on (-m,m) --so that its Fourier transform H(f) exists by 

the classical Fourier integral theorem--then the Fourier transform of 

the generalized function x defined by h(t) is the generalized function 

x defined by H(f). 

Proof: We have that 
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s 
l+f2)-lH(f)\df = 

al 

-(D s 
1+r2)-l h(t)exp(-2nift)dtldf 

-CO s -CO 

- s 
< OD (l+f2)-ldf 

s 
* Ih(t)ldt 

-0D -CD 

Hence (l+f2)H(f) is absolutely integrable on (-~,a) and does define 

a generalized function. Let g(t) be any test function and let G(f) be 

its Fourier transform. Then we have 

s 

co 
-ii(G) = H(f)G(f)df 

-03 

s 

03 
= h(t)d-t)dt 

-03 

s 

co 
= h(t)F(G)dt 

-03 = x@(G)) 
where we have used Parseval's formula and (2.12). Since this holds 

for all G(t) in S, we have 6 = y and the theorem is proved. 

2.3 THE DlRAC DEITA FUNCTION AND ITS TRANSFORM 

We now show that the sequence {(n/a+) exp(-nt2)) is regular and 

represents the important Dirac delta function 6. This generalized 

function has the property that for every H(t) in S, 
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6(H) = H(0) (2.21) 

To prove this, we shall need the following definite integrals: 

(a) Jrn (n/rr)*exp(-nt2)dt'= 1 ; n = 1,2,3,...... 
-CO 

(b) s QD (n/fi)* t exp (-nt2)dt = (na) i) 
-CO 

To establish (2.21), we must show that if H(t) is a test function, then 

l+3. OD s 
m 

n 
(n/rr)'exp(-nt2)H(t)dt = H(0) 

-Co 

Multiplying both sides of (a) by H(O), we may write 

exp(-nt2)H(t)dt - H(0) = 
I (s 

OD (n/n)*exp(-nt2)(H(t)-H(O))dt 
-00 

Jr 
Co = (n/z)% exp(-nt2)[Ho-H(0)l,t 

-Co t 

,< 11 (n/Rj) Itlexp(-nt')iy dt 1 

Now by the Mean Value Theorem for derivatives, on each interval [O,t ] 

(or [t,O] ) there exists a S t,O<St<t(t<St<O),suchthat 

Now H'(t) is in S and hence is bounded on the real line, so we have 

for each t 
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A = sup 
t 

lH’(t)ll ,> IH’(P,,l = lHct) ; H(o)I 

Putting into the above and then using (b) gives 

(n/n)'exp(-nt2)H(t)dt - H(o)( 5 A 11 (n/n)*ltlexp(-nt2k 

and this last expression tends to zero as n + ~0. Hence we have 

s 

co 
6(H) = nla m (-n/rr)*exp(-nt2)H(t)dt = H(0) 

-03 

It is well known (see [41 ) that (n/n:)kxp( -nt2) and exp (-rr2f2/n) 

form an ordinary Fourier transform pair, that is, 

(n/n? e( -nt2)Mxp(-fi2f2/n) 

and hence the sequence (exp(-n2f2/n)} is a representative of the 

Fourier transform of the generalized function 6. Now for any test 

function H(f), we have 

OD 

n S-0, s 
exp(-s2f2/n)H(f)df = 

-03 s 

m 
l.H(f)df = I(H) 

-03 
(2.22) 

where I is the generalized function of the example following Defini- 

tion 2.23. But from (2.22), we see that I is the generalized function 

defined by the ordinary function h(t) = 1 for all t. Thus, by Defini- 

tion 2.25, we have that I = 7, and hence F(6) = 5: and F-'(i) = 6. 

More briefly, 

(2.23) 
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Fro& (2.23) and. (2.16), we have , 

61,-to 
-y(-2*itof) 

Note that exp(-2xitof) does define a generalized function because 
. 

( ;+t2)'l exp(-2kitof) is absolutely integrable. 

From (2.24) and Theorem 2.21, 

Gj(2nitfo) M61 f '- 0 

Putting f. = 0 in (2.23) yields 

(2.21) 

i-6 (2.26) 

First noting that cos at and sin at define generalized functions' 

and then writing cos 25rtfo = *[exp(2aitfo) + exp(-2nitfo)] J using 

(2.23) and the linearity of the Fourier transform' we obtain 

cos 23-i-tf o- *bl f + hl f 1 
'- 0 ' 0 

Writing sin 23+tfo = & [exp(21ritfo) - exp(-2nitfo)] J in a 

similar manner we find that 

sin 2lftf < 
0 

6 1J-fo 1 - %,fo 

(2.‘27) 

(2.28) 

Hence the generalized functions sin 2rrtfo and cos 2srtfo defined by the 

ordinary functions sin 2fifo and cos 2srtfo have Fourier transforms' a 

property which the ordinary functions do not have. 

2.4 CCMMEXFS ON NOTATION 

It has been mentioned that in [31 Lighthill uses an "integral" .. 
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notation for s(G), s in 3, ,G in S. There,,to denote the number s(G), 

the symbol 

s 

c13 
S(t)G(t)dt, (2.?9) 

-CO 

is used, that is, 

co 
s(G) G s s(t)G(t)dt m ,ls o3 

-Co s 
03 

s,,$t)G(t)dt (2.30) 
-03 

In general, the expression (2.29) has no meaning as an integral, in fact, 

the notation s(t) has no meaning in general since s is not an ordinary 

function. However, for the space K of ordinary functions h(t) such 

that (l+t2)-Nh(t) is absolutely integrable for some NJ each quantity 

in the notation 

s 
co !i(G) = h(t)G(t)dt = nla oD 

-CO s 

co 
hn(t)G(t)dt (2.31) 

-CO 

has a well-defined meaning. Furthermore' the integral notation is 

preferred here because it is more explicit than the notation x(G). 

This, along with some manipulative advantages of the integral notation, 

leads us to make the following changes in notation. 

Definition 2.40 A generalized function s will be denoted by the 

symbol s(t) and for each G in S, s(G) will be denoted by (2.29). 

Furthermore, for each h(t) in K, the symbol h(t) will be used to 

denote both the ordinary function h(t) and the generalized function 

x defined by h(t). 

We shall now point out some changes which this makes in previously 
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encountered generalized functions. We now have *ha-t 

(1) The generalized function ra b is now denoted-b-jr the symbol 
J 

r(at+b) in order to be corkistent with Definition 2.40, 

for we have 

s Q) Q) 
r(t)G(t)dt = n 1% o3 s +)(=(t)dt 

-0) -CO 

and the defining sequence for r a b is obtained by replacing 
J 

t by at+b in each m(t), hence 

s O1 
.- 

r(at+b)G(t)dt = nlA.+ o1 rn(at+b)G(t)dt (2.32) -0D s -CO 
(2) The transform pair of (2.23) are now written as 

6(t)-1 (2.33) 

(3) The transform pairs (2.24) through (2.28) are now written as 

G(t-to)Vxp(-2nitof) (2.34) 

exp(2nitfo) +---+6(f-fo) (2.35) 

1-6(f) (z.36) 

cos 2lkf .- +[ 6(f-fo) + 6(f+fo)l. (2.37) 

sin 2Jrtf$ :2; @(f-f01 - 6(f+fo)l 

(4) For each H(t) in S, in place of (2.21) we now have 

(2.38) 

s 

m 
G(t)H(t)dt = H(0) (2.39) 

-03 
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2.5 EQUALITY OF ORDINARY AND GENERALIZED FUNCTIONS ON AN INTERVAL 

In (B) of Section 2.1, it was stated that 6(t) is sometimes 

described as having the property that 6(t) = 0 if t f 0. We can now 

give a more precise meaning to this part of (B). 

Definition 2.50 Let g(t) be an ordinary function such that, for any 

test function G(t) which is zero outside of the interval (a,b), 

g(t)G(t) is integrable on (a,b), a <b. If s(t) is a generalized 

function such that 

s 

03 b 
s(t)G(t)dt = 

-CO s 
dt)G(t)dt (2.40) 

a 

then we define s(t) = g(t) for a < t <b. 

In the sense of this definition, we have 6(t) = 0 for 0 < t < 03. 

For suppose G(t) = 0 for all t < 0, G(t) in S. Then G(0) = 0 and 

we have 

s 
co 

s 
03 

S(t)G(t)dt = G(0) = 0 = O*G(t)dt 
-co 0 

where the first equality is obtained from (2.39). In a similar manner, 

we find that 6(t) = 0 for -Q) <t < 0. Thus, in the sense of 

Definition 2.50, 6(t) = 0 if t # 0. 

2.6 CONVOLUTION OF GENERALIZED FUNCTIONS 

We shall not attempt a complete discussion of the convolution of 

two generalized functions. A convolution of generalized functions 

cannot in general be defined without imposing some restrictions on one 

of the functions. A complete discussion may be found in [5] and [8]. 
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One immediate problem we would encounter in such a discussion would 

be the lack of the concepts of convergence in S and continuity of gen- 

eralized functions. For a proof of the continuity in a certain sense 

of every generalized function defined here, see [6]. 

Convolution of a generalized function and a test function 

The‘convolution of a generalized function and a test function 

is derived from a previously defined generalized function. Putting 

a = 1 and b = -t in the definition of the generalized function s 
a,b' 

We obtain for each G in S, 

m s1 t(G) = ,lim, m 
>- s 

sn(x-t)G(x)dx 
-03 

(2.41) 

s 

m 
= s(x-t)G(x)dx 

-CD 

Fixing G and letting t vary, we see that this defines an ordinary 

function of t. The convolution of s in 3 and G in S is defined to be 

the ordinary function 

s(t m)‘AG(t) = s1 >- t(G) (2.42) 

By making a change of variable in (2.41), we see that 

s 

cn 
s(t)*G(t) = $C-+ cD sn(x)G(t+x)dx 

-a, 

(2.43) 

s 

m 
= s(x)G(t+x)dx 

-03 
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In the last lines of (2.41) and (2.43), we have reverted.to the inte- 

gral notation. 

Note that if G is any function of S, then 

s 

m 
b(t)*G(t) = G(x)G(t+x)dx 

-co 

(2.44) 
= s(t) 

Convolution of generalized functions 

Let r and s be generalized functions and suppose s(t)++G(t) is in 

S for all G in S. The convolution of r and s is defined by 

(r*s)(G) = r(swG) (2.45) 

When using the r(t), s(t) notation, the convolution will be denoted by 

writing r(t)*s(t). The corresponding integral notation is obtained as 

follows. We have 

(r%)(G) = 
s 

O3 (r(t)*s(t))G(t)dt (2.46) 
-co 

and 

(r%)(G) = r(s*G) 

s 
m = r(x) s(t-x)G(t)dt dx 

-03 1 
= 11 [I, r(x)s(t-x)dx] G(t)dt 

(2.47) 

Comparing (2.46) and (2.47), we have in the integral notation that 
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s 

m 
r(t)*s(t) = r(x)s(t-x)dx (2.48) 

-CO 

As noted above, G(t)*G(t) = G(t) for all G in S, and hence for 

any r(t) in 5, we-have 

r*6(G) = r(6+-G) = r(G) (2.49) 

Therefore, r(t)+&(t) = r(t) for every generalized function r(t). In 

the integral notation, (2.49) yields 

r(t) = 
s 

co 
r(x)b(t-x)dx (2.50) 

-Co 

We have already shown that F(6(t)) = 1, and hence for any s(t) 

in ?? we have that 

F(s(t)*G(t)) = F(s(t)).l = F(s(t))*F(G(t)). (2.51) 

Clearly we have 

s(t)*6(t-to) = s(t-to) 

and by (2.16) and (2.34) 

F(s(t-to)) = exp(-2nifto)F(s(t)), 

F(G(t-to)) = exp(-2nifto). 

Therefore, we have 

F(s(t)*G(t-to)) = F(s(t))F(G(t-to)) (2.52) 
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Suppose that Q(t) is a finite linear combination of delta func- 

tions, that is, 

o(t) = f 
j=-M 

aj6(t-tj) (2.53) 

where the a 
j 

and x 
3 

a.re constants. Then it is easy to show that con- 

volution is linear, and hence if s(t) is in ?! 

s(t)*@(t) = f SjS(t-tj) (2.54) 
j=-M 

Applying F to both sides, using its linearity and (2.52), we obtain 

F(s(t)*@(t)) = F(s(t))F(Q(t)) (2.55) 

Letting r(f) = F(s(t)) and q(f) = F(Q(t)), applying F-1 to both sides 

of (2.55) and using (2.54), we obtain 

F-'(r(f)q(f)) = 'f 
j=-M 

ajs(t-tj) (2.56) 

2.7 TRIGONOMETRIC SERIES 

If sZ(t) is a generalized function for each value of the parameter 

z and if s(t) is a generalized function such that 

s 

m 

s 

a, 

zAS a sZ(t)G(t)dt = s(t)G(t)dt (2.57) -o) 
-Co 

for all G(t) in S, then s,(t) is said to converge to s(t) and we write 

zlim+ a sz(t) = s(t). 

55 



With this definition of convergence in 2, we have the foliowing 

theorem (see [ 31 for a proof). 

Theorem 2.70 The trigonometric series 

co 
c anexp(insrt/p) 

n=-co 
(2.58) 

converges in the sense of (2.57) to a generalized function s(t) if and 

only if a n = O(lnlN) f or some N as InI + 0~. If (2.58) converges, 

then its Fourier transform is 

co 
r(f) = c an6(f-n/2p) 

n=-co 
(2.59) 

Also, s(t) = 0 only if an = 0 for all n. 

The function r(f) is called a lrrow of deltasM of spacing 1/2p. 

This function is represented graphically by drawing vertical lines of 

amplitudes a n at the points f = n/2p (see Figure 2.3). This repre- 

a -- 0 

I I 
-312~ -l/P 42p 1/2P l/p 3/2~ 2/P 

f 

FIGURE 2.3 

sentation arises from the equality in the sense of Definition 2.30 of 

r(f) and an ordinary function which is zero on (n/2p, (n+1)/2p). If 

g(t) is an ordinary periodic function which has a Fourier series 
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representation, then the an are the Fourier coefficients (see [ 33 ) 

a n=(l/2P) p 
s 

g(t)exp(-innt/p)dt. 
-P 

This is equivalent to the statement that convergen'ce of a trigonometric 

series in the ordinary sense implies convergence in the sense of (2.57) 

and that the limits are the same. The converse is not true, for,by 

Theorem 2.70, the series 

F cos( nfit/p) 
n2-02 

converges 

function. 

in the sense of (2.57 '), but obviously not to an ordinary 
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CHAPTER III 

FILTERS 

3.0 LINEXR SYSTEMS 

A linear system, for our purposes, is a linear operator (mapping) 

L of 5 into 8. That is, if g(t), h(t) are in ?? and a,b are scalars, 

then 

L(ag(t) + bh(t)) = aLk(t)? + bL(h(t)) (3.0) 

We have already encountered some linear operators on 3. The Fourier 

transform and inverse Fourier transform are both linear operators on 

3. Another example is the operation of taking the generalized 

derivative of a generalized function. 

dnder certain conditions, a linear system L is completely charac- 

terized by the effect of applying L to the set of generalized functions 

of the form 6(t-x). That is, suppose that for every value of the 

parameter x, we have L{G(t-x)} = hx(t), and that the family of 

generalized functions hx(t) is known. Let g(t) be an arbitrary element 

of 5, and let r(t) = L[g(t)). The function g(t) is usually called the 

input of the linear system L, and the function r(t) is called the 

output of L. From (2.50) we have 

s 

m 
g(t) = g(x)b(t-x)dx, 

-03 
(3.1) 

and applying L to both sides, we obtain 

s 

al 
r(t) = L( g(x)b(t-x)dx). 

-a 
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Assuming that (3.0) is sufficient to write 

co 
(13 LC 

s 
g(x)b(t-x)dx] = 

s 
Lbdx)6(t-x)ldx 

-CO -02 

then 

s 

03 
r(t) = dx)L(G(t-x) h- 

-CO 

s 

03 
= dx)hx(t)dx 

-03 

Suppose that L satisfies the condition: 

(A) If L(g(t)) = r(t) and to is real constant, then 

L(g(t-to)) = r(t-to), i.e., L is time-invariant. 

Then if L{G(t)) = h(t), L(6(t-to)} = h(t-to) and 

s 

co 
r(t) = dx)h(t-x)dx, (3.2) 

-CO 

that is, the output of L is given in terms of the input and a unique 

function h(t). The function h(t) is called the impulse response or 

weight function of the linear system L, and its Fourier transform 

s 

m 
H(f) = h(t)exp(-2nift)dt 

-03 
(3.3) 

is called the system or transfer function of L. 

Note that (3.2) is the convolution g(t)*h(t). If r(t)WR(f) 

g(t)-(f), then using (3.2) and assuming that the convolution 

theorem holds for these generalized functions, we have 
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r(t) = dt)*h(t)V(f)H(f) 
and 

R(f) = G(f)H(f), 

s 

m 
r(t) = G(f)H(f)exp(2flift)df 

-co 

(3i4) 

That is, the Fourier transform of the output of the linear system L 

is equal to the product of the transforms of the input and the weight 

function h(t). We also note that if G(f) is the transform of an input 

and R(f) is the transform of a desired output, then from (3.4) the 

transfer function of the linear system L giving the desired output is 

. (3.5) 

H(f) may in general be complex (see (1.38)) 

H(f) = A(f)exp(ie(f)) 

where A(f) and Q(f) have already been defined in the classical case 

as the Fourier spectrum and phase angle of h(t), respectively. 

Definition 9. A linear system L which satisfies (A) is called a 

filter if A(f) is small in some sense on certain parts of the frequency 

axis. A low-pass filter is a filter for which A(f) is small for 

IfI > fc where fc is called the cut-off frequency. A band-pass filter 

is a filter for which A(f) is small outside the intervals [Fj,fj], 

j=l,2 ,......, n. A frequency 7 is said to be passed by a filter if 

A(?) is not small. 
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3 .l IDEAL LOW-PASS FILTERS 

Ideal smoothing filter. 

This, by defintion, is a low-pass filter which passes all 

frequencies f such that IfI ,< fc without change and deletes all 

frequencies greater than fc. No phase shift is involved, and 

hence e(f) = 0. Thus 

1 

c 

lfl 5fc 
H(f) = A(f) = 

0 lfl ’ fc’ 

See figure 3.1. 

H(f) 

1 

I I -f 

-fc fc 

FIGURE 3.1 

The corresponding weight function is 

fc 
h(t) = 

s 
exp(2nift)df 

-fc 

fc 

= 2 
s 

cos 2nftdf 
0 

(3.6) 

(3.7) 

sin 2flfct 
= 

lft 
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If g(t) is the input to this filter, then the output is 

r 03 r(t) = dz)h(t-z)dz, 
J -03 

which has transform [see (3.4)} 

G(f)H(f) 

R(f) = 

0 

where g(t) +---+af) - 

Ideal smoothing 

BY (2.17), 

and differentiating filter. 

if g(t)-(f), then for n = 1, 2,......, we have 

(3 -6) 

From (3.5) we see that to find the 2 derivative of an input g(t) 

the transfer function must be (2fiif)n. Then, in order to smooth 

th using the ideal filter and find the n- derivative, the transfer 

function is given by 

(2nif)n lfl 5 fc 
H(f) = (3.9) 

0 lfl ’ fc 

and the weight function is 

fc h,(t) = s (2fiif)nexp(2fiift)df 

-fc 
(3.10) 

But differentiating (3.7) n times, we have 
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fc! 
hyt) = 

s 
(2nif)nexp(2flift)df 

-fc 
(3.11) 

and so 

h (t) n = h(n)(t) (3.12) 

Thus to find the weight function of the ideal smoothing and different- 

iating filter we simply differentiate the weight function of the smoothing 

filter the appropriate number of times. Then the output of the filter is 

.given by 

PC t) = 
J dz)hin 
-m 

' ~)(t-z)dz. 

3.2 THE SAMPLING THEOREM 

(3.13) 

Ideal filters of the type discussed above are not physically 

realizable because of the jump discontinuities at + fc. Furthermore, 

in digital filtering the input consists of a finite number of equally 

spaced values g,,M < m < N, which we may assume are samples of some - - 

function g(t) for t = mAt = +. We may also assume that g(t) defines 
S 

a generalized function, for, recalling Definition 2.25 and Theorem 2.23, 

this does not place a serious restriction on g(t). It is obvious that 

g(t) is not uniquely determined by the values gm, and hence the set of 

values gmare associated with a subset %lN of -2. 

If we know that the samples gmarise from a function g(t) whose 

transform G(f) is zero for IfI > fS, then the subset GMN of 3 is reduced 

to a subset GhC 
%N' In this case g(t) is said to be band-limited. 
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Theorem 8. Shannon's sampling theorem (see [9] 1. 

If g(t) is band-limited, i.e., if g(t)-(f) where 

G(f) = 0 lfl > fp (s.+> 

then g(t) can be uniquely determined from its values 

gn = g&4 (3.15) 
B 

1 at a sequence of equidistant points of distance - 
2f apart. 

B 
Furthermore 

g(t) = Jm gn 
sin 3f (2fSt-n) 

-- 'IC (2fSt-n) ' 

Proof: We first compute the gn. We have, using (3.1)-i), 

fB 
g(t) = 

s 
G(f)exp(2nift)df 

-fB 

hence 

gn 
= g(%) = If G(f)exp(nnif/fS)df. 

B 
Expanding G(f) in a Fourier series on (-f f ) we have 

B' B 

G(f) = 2 Gnexp(-nnif/fS), 
n=-& -fs<f -cf B' 

where 

fB 
Gn = + 

8 s -f 
G(f)exp(~if/f~)df 

B 

(3.16) 

(3.17) 

(3.18) 

(3.19) 
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comparing (3.17) and (3.191 we have 

The function 

E(f) = g & 
n=-oD B 

exp(-nrrif/f@), -a < f < mj 

is the periodic extension of G(f) and 

z(f) = G(f) 
for -fB < f < f B * 

Hence we may write 

G(f) = H(f)c(f) 

where 

1 

H(f) = 

0 

Now (see (3.6) and (3.8)) 

sin 2nf t 

n-t ' +----+H(f) 

So we have 

G(f) = H(f& & 
B 

exp(-n*if/fs) 

co 
gn = - H(f)exp(-nnif/fs) 

n=-co 2f 
B 

(3.20) 

65 



and 

-nsrif/fS) exp(2nift)df 1 
H(f)exp(-nxif/fS)exp(2nift)df. 

Applying the First Shifting Theorem gives 

g(t) = 
Jm g 

sin 27ffS(t-n/2fS) 

fl(t-nkf,) 

CD 
= 

c 'n 

sin fi(2fSt-n) 

n=-a *(2fSt.-n) 

If fs is any number such that fs _> 2f 
B' 

then the theorem remains 

true if in the proof the periodic functionE(f) is assumed to be of 

period fs, and H(f) '= 1 for IfI 5 2 ; 
f 

H(f) = O,lfj > + 

Therefore 

g(t) = 2 gn 
sin n(fst-n) 

n=-co n(fst-n) 

where 

(3.21) 

(3.22) 

If the gn are known, as assumed above, for M < n < N, then the - - 

function 
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(3.23) 

differs from each function z(t) of G& by 

M-l 
c-(t) = c 2, 

sin *(fst-n) Q) 

fl(fst-n) 
+ .c 

sin *(fst-n) 
(3.24) 

g n=-03 n=N+l % *(.f,t-n) 

where g n 
= g(p). Hence, at least in the cases where the series in- 

S 

(3.21) converges uniformly to g(t), the maximum difference 

Max (E ,(t)l = max l&t)-gMN(t)l 
t t 

(3.23) 

can be made as small as we please by taking a sufficient number of 

terms in sN(+'). Thus we can associate with the samples {g,) a 

unique function g(t) in the sense that (3.25) can be made arbitrarily 

small by taking a sufficient number of samples. 

3.3 DEFINITION OF A DIGITAL FILTER 

Suppose that the sampled function g(t) is band-limited. Then 

G(f) = 0 for IfI > fS. If H(f) is a desired transfer function, 

then H(f)G(f) = 0 for IfI > fS. Thus if x(f) is a periodic extension 

of H(f) with period fs _> 2f 
B' 

we have the transform R(f) of the output 

r(t) given by 

R(f) = H(f)G(f) = E(f)G(f), (3.26) 

for all f. 
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If H(f) is such that H(f) can be written as a trigonometric 

series, 

E(f) = t an exp(2nnif/fs) (3.27) 
n=-ra 

with a n = O(lnlN) f or some N as InI W a, then, by Theorem 2.70, 

x(f) E ?? and is the transform of 

i;(t) = C a.n G(t+n/fs) 
n=-0D 

(3.28) 

Now g(t) is time sampled. In order to obtain a time sampled version 

of the output r(t) we might define a convolution g(t)+$(t) and extend 

(2.54) and (2.55) to functions 0(t) =x(t). Assuming that we did this, 

we would have 

co 
r(t) = 2 

n=-& 
and t+dfs > 

which would yield the sampled version of r(t) for t = m/fs as 

03 
r(m/fs) = C and (m+n)/fs) 

n=-c0 

which is impossible to use digitally since it requires infinitely 

many samples. 

Alternately, let 

q@p) = f 
n=M 

anexp(2nrrif/fs) (3.29) 
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be a trigonometric polynomial which approximates H(f) in some sense. 

Then (3.29) is the transform of 

%tt) = nZ “n 6(t+dfs), (3 -30) 

and by (2.54) the convolution g(t)*&(t) is defined for all g(t) E 5. 

Also (2.55) holds. Thus 

R(f) = G(f)H(f) f G(f)%(f) =x(f) (3.31) 

and F(t)&(f) is given by 

T(t) = g(t)*&(t) 

N a, 
= .z a 

n=M n s 
g(z)G(t-z + n/fs)dz 

-03 

= E ang(t+n/fs). 
n=M 

For t = m/fs, 7 = ?(m/f,), gm = (mifs), we have 
m 

N 
F = 

m c 
n=M "ngm+n 

This is the fundamental-formula of digital filtering. 

Note that any pair (3.29) and (3.30) determine a linear operator 

L on 3 which satisfies condition (A) and which, on the subspace Gs 

of all band-limited functions g(t) with 2f 
B- 

< fs, acts as a low-pass 

filter. Now any finite set of constants an determines a generalized 

(3.32) 
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function (3.30), which determines (3.29) and hence a linear operator L. 

Definition 3. Let an, M ,< n ,< N, be any set of constants. Then 

the linear system x determined by the an is called a digital or 

numerical filter. The constants anare ca.lled the weights of the 

digital filter. 

Application of x must be limited to the subspace G 
S’ 

Otherwise 

"frequency folding" occurs, i.e., frequencies in the intervals 

( 
(2n-l)fs (2n+l)fs 

2 , 2 ), n = 2 1, 2 2, . . . , are folded back into the 

>). F or example, suppose the input contains a frequency 
f 

component Aces 2n(fo+kf 
S 

)t where f < -$ and k is a.positive 
0 

integer. Then if we sample at t = n/fs, 

Aces %(fo+kfs)n/fs = Aces [2nfon/fs + 2nkn I 

= Aces (2nfon/fs). 

The sample values would be the same as those obtained from a component 

Aces 2Rfot for t = n/f . 
S 

Hence the filter treats the frequency 

f. + kfs > fs/2 in the same manner as fo. 

3.4 EVEN AND ODD TRANSFER FUNCTIONS 

In most cases of interest here, the transfer function H(f) is either 

even or odd. Hence the trigonometric polynomial HMN(f) which 

approximates H(f) can be written in terms of cos 2nJtf/fs and sin 2nnf/f 
S 

respectively. If we take M = -N some advantages are gained. Let 
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N 
'H&f) = qf) = C anexp(2nnif/fs). 

n=-N 

For even functions, 

HN(f) = a0 + 2 ,ntl ancos 2nfif/fs. 

For odd functions, 

s(f) = 2: jl ansin 2nflf/f . 
S 

(3.33) 

(3.34) 

(3.35) 

Two questions now arise: 

(1) given H(f), how are the weights an to be chosen, and 

(2) what is the error introduced by the approximation 

E(f) 5 R(f)? 

3.5 METHODS OF FILTER APPROXIMATION 

If H(f) is an ordinary function, there are several methods of 

approximating H(f) and obtaining the weights a n' One of these 

methods--the Min-Max technique--is given by Martin [ll]. Essentially, 

it assumes continuity of H(f) in which case, if Qn(f) is a set of N 

fs fs continuous and linearly independent functions on [- 2, ~1 , then 

there exists a polynomial 

PN(f) = alQl(f) + . . . + aNQN(f) 

f f 
which deviates the least from H(f)on (- 2, $), i.e., 
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max 

fs fs 
JH(f)-PN(f)( ,< max 

fs fs 
II-I(f) - ,J ,",&,(f,l 

Ll=l 
fE(- yT,-$ fE c-y,+ 

for any numbers x1, x2, . . ., xN. The an(f) are obtained after 

putting a constraint (or constraints) on a trigonometric polynomial 

(3.33). PN(f) is then fitted at a finite number of points to H(f) 

in the above sense. A good approximation of the anis obtained by 

an iterative process, but the technique is long and complex, and not 

very versatile. That is, any change in H(f) necessitates a complete 

repetition of the process for finding the a . 
n 

The method we shall use assumes that H(f) can be approximated.by 

a Fourier series, 

co 
ii(f) = c 

n=-m 
hnexp(2nnif/fs), (3.36) 

where f$ 
hII = l/f 

S s -f2/2 
H(f)exp(-2nnif/fs)df, (3.37) 

and HN(f) is taken to be the truncated series for H(f), 

HN(f) = -"cl 
n=-N 

hnexp(2nnif/fs). 

This gives a function which is the best fit to H(f) in the least mean 

square sense. (See [1] for a discussion of Fourier series.) 

Noting that, since H(f) = 0 for IfI >&j, the inverse transform 
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of H(f) is 

fs/2 
h(t) = 

s 
H(f)exp(-2Rift)df, 

-fs/2 
(3.39) 

and comparing (3.39) ande.37), we s'ee that 

hn = l/fs h(-n/fs). (3.40) 

This is the basic formula for computing the hn = an to use in (3.32). 

Therefore (3.32) can be written as 

r = N / 
m c n=-h hngm+n' (3.41) 

The Min-Max technique uses a finite number of values of the transfer 

function H(f), while the second approach assumes that H(f) is given for 

all f, and hence the h,may be computed from (3.37), or from (3.40) if 

h(t) is computed first. In some applications, H(f) is known at only 

a finite number of points and this second method is not applicable. 

In particular, the case sometimes arises that 

H(f) = A(f)exp(ie(f)) 

and only values of A(f) and 0(f) are known at equally spaced points on 

the interval (0, fs/2). A method for computing the hn for such a filter 

is discussed in Appendix B. 

3.6 ERROR ANALYSIS 

With an approximation F$(f) of H(f), (3.31) becomes 
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R(f) = G(f)H(f) f G(f)H#) =fi(f), 

and so 

R(f)-ii(f) = G(f)[H(f)-s(f)]. 

This gives the pointwise error between the spectrum of the desired output 

and the spectrum of the actual output. 

For a complex frequency component g,(t) = Aexp(2nifot) in the 

input we have 

g,(t) = Aexp(2nifot) +----+A.G(f-fo) = G(fo) 

and 

R(fo) = A-G(f-fo)H(fo), 

also 

Ti(fo) = A*G(f-fo)s(fo). 

Denoting the difference in the outputs by t(fo,t) we have 

O5 1 E(fo,t)l = 1 
s 

A.G(f-fo) H(fo)-HN(fo) exp(2nift)dfl 
-Co 

= lAexp(2rrifot) H(fo) - HN(fo) 1 

= lAexp(2nifot)l * 1 E(fo,N) I, 

where E(fo,N) = H(fo) - HN(fo). 

In the time sampled version: 
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Y I’! 

\ E(fo,n/fs) I = 1 A exp(2nifon/fs)\ * I E(fo,N)I. (3.42) 

Thus the magnitude of the error in a component of the actual sampled 

output is given in terms of the magnitude of the corresponding component 

of the input function, and of the magnitude of the error in the approx- 

imation of H(f). 

Approximations of E, 

E = max \ E(f,N)\ = max \H(f) - HN(f)\ (3.43) 
f f 

.derived mathematically are usually found to be so large as to render 

them useless in applications. In applications of thesmoothing filter 

discussed later, acceptable values of E are in the range .005 < E < .Ol, - - 

or referred to unity, 5 $J and 1%. When speaking of percent error 

we will always mean E referred to unity. For a given H(f), an N is 

found empirically such that HN(f) approximates H(f) within the desired 

limits. 

However, satisfying the requirement that .005 < E < .Ol does not - - 

imply the output error is within these bounds (see Chapter VII). 

3.7 THE GIBBS' PHEN@LENON 

When approximating an ideal or designed transfer function 

H(f) having one or more jump discontinuities with a truncated 

Fourier series, there exist oscillations in the approximating 

transfer function HN(f) near the discontinuities of H(f) due to 

the Gibbs' phenomenon (see [ 121 ). No matter how large N is taken, 

E cannot be brought within the acceptable range .005 5 E < .Ol. 
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To avoid this difficulty H(f) is first apprpximated by a function which 

is continuous. In most cases, this imposes a restriction on the 

input g(t). The particular cases of interest here shall be dealt 

with in the next chapter. 
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CHAPrFJR IV 

FILTER DESIGN 

4.0 ASSUMITIONS ABOUT THE INFUT 

In order to apply a digital filter to a set of samples (g,), 

we have made two assumptions about the data: 

I.' It arises from a function g(t) which defines a generalized 

function, and 

II. g(t) is band-limited. 

In many cases of interest, the Fourier spectrum G(f) of a signal 

g(t) consists of a desired signal spectrum in an interval [-fc,fc], 

an unwanted signal spectrum (noise spectrum) in interva.ls [-f p-fc) 

and (fc,fs], and G(f) = 0 for IfI > fB. When applying a low-pass 

filter, elimination of the unwanted spectrum is desired. Hence the 

ideal filter transfer function, H (f), I is such that H (f) 
I 

= 0, 

PI ’ fg Usually HI(z fc) i 0 and H (f) I has jump discontinuities 

atf=+f. - c If the truncated Fourier series of HI(f) is used to 

approximate HI(f), then, due to the Gibbs' phenomenon, large 

oscillations persist in a neighborhood of -t fc. Furthermore, the 

amplitude of these oscillations remains 'constant with increasing N. 

The truncated Fourier series is continuous everywhere because it is 

a finite sum of everywhere continuous functions. Since HI(fc) 1 0, 

we expect that the truncated series, f$p), is such that H&l + 0. 

Then, by continuity, HN(f) is non-zero on some interval (fc,fc+Af) 

where Af > 0 and depends on N. Any unwanted frequencies which 

appear in this interval are passed --though somewhat attenuated--by 
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the approximating filter. Hence, in addition to the large oscillations 

which appear near + fc, unwanted frequencies arbitrarily close to + fc 

cannot be eliminated by increasing N. This undesirable property must 

be tolerated because it is a property of any truncated Fourier series 

such that HN(fc) k 0. However, the large oscillations are caused 

by non-uniform convergence of the Fourier series of HI(f). This can 

be remedied by redefining HI(f) so that it is a continuous function. 

We choose to do this on the intervals (-fc-Af, -fc) and (fc, fc+Af) 

for some Af > 0. Any unwanted frequencies in these intervals will 

be passed to some extent by the filter, but, as pointed out above, 

'this cannot be avoided anyway. However, in many applications unwanted 

frequencies do not appear near zfc. Therefore, we make the following 

third assumption about the data: 

III. The desired signal spectrum and the unwanted spectrum of g(t) 

are disjoint. 

Then there exists a Af > 0 such that the signal spectrum G(f) = 0 

on (-fc-Af, -fc) and (fc, fc+Af). Letting fT = fc+Af, we may modify 

HI(f) on L-f,, -f ) and (fc, 
C 

f,]to obtain a function H(f) contin- 

uous for all f and thereby eliminate the Gibbs' phenomenon. H(f), 

as defined on the intervals [-f,, -fc) and (fc, f,], is called the 

roll-off of the filter, and the frequency f T is called the termination 

frequency. 

4.1 FILTER DESIGN BY CONVOLUTION 

The usual approach to the design of a filter is to select the 

ideal transfer function HI(f) on [-fc, fc] and then to specify the 

roll-off. This gives the filter transfer function H(f) from which 
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the weight function h(t) is found. The weights of the filter to 

be used in (3.41) are then computed from (3.40). In addition to 

not being very versatile, this approach usually involves some 

rather long and tedious integration in determining h(t). 

We propose a different approach to the design which simplifies 

the integration and gives considerable freedom in varying the roll- 

off sharje of the filter. We shall use the convolution theorem of 

Chapter I: 

k(t )dt 
s 

03 
M----+ k(z)G(f-z)dz 

-03 

where g(t) V(f) and k(t)wK(f). 

(4.1) 

Before continuing, we note that filters for simultaneously performing 

smoothing and differentiation can be found from the weight-transfer functions, 

h(t) and H(f), of the smoothing filter by applying (2.17) in a manner 

analogous to that in the ideal case [see Section (3.1)]. That is, to 

th smooth and find the n-- derivative, the transfer function is 

Yn(f) = (2flif)nH(f). 

With 

we have 

y"(t) = h(n)(t) 

where 

(4.2) 

(4.3a) 

h(t)+--+H(f). 
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In.(4.3a), let t = -x/fs. Then tn = (-x/fs)n and dtn = (-l/fs)ndxn. 

Hence 

Y"( -es > = 
dnh(-x/f,) 

(-l/fs)ndxn 

= (-l)"f,n 
d%( -x/fs > 

dxn 

Using (3.40) t o compute the weights of the filter, we have 

n 
'k 

= l/fs Y"(-k/fs) 

= (-l)nfsn 
{dn l/fs h( -x/f& ) 

dxn 'x=k 

We now see that we may write 

d 
% 

yf: = (-l)nff - 
dkn 

(b.3bb) 

where hk = l/fsh(-k/f ) and 
S 

, for purp0se.s of differentiating, k is treated 

as a variable in the right side of (4.3b) 

Returning to the problem of designing the filter, we conclude 

from the above that we may restrict ourselves to the design of smooth- 

ing filters. Hence suppose that 

s 

CD 
H(f) = K(z)G(f-z)dz. 

-03 
(4.4) 
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Ideally, for smoothing we want H(f) to be continuous, and 

1, 0 < f < fc, - - 

H(f) = monotonic decreasing, fc < f < fT, 

0, f 2 fcJ 

H(-f), f < 0. 

We attempt to find functions G(f) and K(f) such that H(f) 

given by (4.4) has these properties. Then the weight function 

h(t) is given by 

h(t) = k(t)dt). 

In the following, we choose G(t) to be the function 

1, IfI _< (f,+f,)/2, 

G(f) = 

0 IfI > (fc+fT)/2 

Then comparing with (3.6) and (3.7), we see that the corresponding 

weight function is 

g(t) = 
sin Jr(fT+fc)t 

n-t . 

Noting that G(f-z) = 0 for If-z1 > (fT+fc)/2, (4.4) becomes 

f+(fT+fc)/2 

H(f) = 
s 

K(z)dz. 
-(fT+fc)/2 

(4.5) 

(4.6) 

(4.7a) 

(4.P) 

(4.8) 
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To find H(fo), K(z) is integrated over an interval of length (fT+fc) 

with f. as its mid-point. Note that any function K(z) which is zero 

for 1zI > (fT-fc)/2 = Af/2 and is an even function of z with area 

1 on [-Af/2, Af/2] yields a satisfactory H(f). 

Filter 1. The Ormsby smoothing filter (p=l). 

In (4.8) let 

l/Af 

K(f) = K&f) = 

IfI 5 Af/2, 
(4.9) 

.See Figure b.1. K&f) 
t 
I I 

-f 

-Af Af 

FIGURE 4.1 

Then Ad2 

k$t) = s (l/Af) exp(2Cft)df 

-Af/2 
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Af/2 

= 2/Af 
s cos (2nft)df 

0 

l/rcAft sin 23fft I Af/2 = 
0 

sin T(Aft = 
gAft ' 

and with g(t) from (4.7-b), we have from (4.6) 

h&t) = k&t)&) 

sin flAft sin n(fT+fc)t 
= 

rr2Aft 2 

Changing to the angular frequency w = 2Jrf, aw = 2figf, wT = &fT, 

W = 2Tffc, we have 
C 

hi(t) = 
2 sin J$ sin (WT:Wc)t 

I-CAwt 
2 

and applying a well-known trigonometric identity 

1. The This is the weight function given by Ormsby 114 ]for p= 

corresponding transfer function, as a function of f, is 

h&t) = 
cos wet - cos w t 

T 
2 . 

flAti 

(4.10) 

(4.11) 
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Hi(f) = -fT 5 f c -fc, 

Hi(f) has a straight line roll-off (see Figure 4.2). H1( f) 
1 

f 
-fT -fc fT 

FIGURE 4.2 

dH&f) 
Note that df is discontinuous at + f and + f 

- c - T' 

Filter 2. The Martin-Graham smoothUx filter. 

In (4.8) let 

(n/2& cos (fif/Af), IfI _< Ad% 

K(f) = K2(f) = (4.12) 

0, IfI > Af/2. 
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See Figure 4.3 

I 1 -f 
-&IT. 
2 

Lx 
2 

FIGURE 4.3 

Then 

Af/2 

k2(t) = 
s 

(fi/2Af) cos (Ff/Af) exp(2nift)df 

-Af/2 

Af/2 

=. (fi/Af) 
s 

cos (nf/Af) cos 2nft df 

0 
(Af/2) 

= (Ir/Af) 
C 

sin((rc/Af) - 2rt)f sin((fl/Af)+2flt)f 

Z((z/Af) - 231-t) + 2((z/Af)+2nt) 1 
0 

= (1/2Af) 
sin((Jr/2) + rrAft) 

+ 
((l/Af) + 2t) 1 

2t + ";.;ift+ 2t 

cos n&f-t 

= (l-bAf2t2) * 
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Then with g(t) from (4.7b), we have from (4.6) 

h2(t) = k2(tk(t) 

cos rcAft sin fl(fT+fc)t 
= 

$t(l-4Af"t*) 
, (4.13) 

where Af 2 = (Af)2. 
2 

We shall also use the notation Aw2 = (Aw) . 

Letting w = 2fif in (4.13) gives 

h2(t) = 
cos(Awt/2) sin((wT+wc)t/2) 

dt ( l-Aw2t2/n2) 

and using a well-known trigonometric identity gives, after simplifying, 

h2(t 1 = 
7f(sin wet + sin wTt) 

2t(n2 - Aw2t2) 
(4.14) 

This is the form of the weight function given by Graham [ 131. 

The form given by Martin PO], [11] is obtained from (4.13) by 

going to the frequency ratio 7 = f/fs, 7c = fc/fs, TT = fT/fs, 

'd = Af/fs (= 2h iti Martin's notation), and computing 

hn = (l/fs)h2(-dfs) 

= Wfs) 
~0s fi(-rdfs)(-n/fs) 

c 

sin fifs(Tc+TT)(-n/fS) 

n(-n/fs)(l-4,~~n2/f~) 1 
cos nJt7 d sin nlr(2Tc + 7d) 

= 
nlr(l-47zn2) 

. (4.17) 

The relation I-~ = 7c + 7d was used in obtaining the last line. This 

is a convenient expression for computing the weights hn of the 

filter. The value of ho is computed by using L'Hospital's rule, 
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and 

hO 
='2yrd = (fT+f,)/fs 

The same procedure must be used for finding hmif m = 1/2~~ for 

then (4.13) assumes the indeterminate form O/O. In this case, 

we have 

hm 
= (.rd/2) cos (I+~) = (Af/2fs) cos (rrfc/Af) 

The transfer function of this filter, in terms of f, is 

1 lfl 5 fcJ 

0, ifI ' fT, 

H2(f) = (l+cosn(f-fc)/Af), 

(l+cosrr(f+fo)/Af), 

f <f<fT, 
C 

-fT < f < -fc. 

See Figure 4.4. 

Alternate expressions for the roll-off are 

(l+oosrr(f-fo)/Af) = cos2z(f-fc)/2Af 

and 

(l+cosrr(f+fc)/Af) = cos2n(f+fc)/2Af. 

Note that H2(f) has one continuous derivative, and 
d2H2( f> 

df2 
is 

discontinuous at f- fT and + fc. 

(4.16) . 

(4.17) 

(4.18) 
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H2(f) 

-fT -fc 
FIGURE 4.4 fc fT 

4.2 CCMPARISON OF TBE PIEXFOBMANCE OF THE OBMSBY AND MARTIN-GRAHAM 

SMOOTHING FILTERS. 

A comparison of the above filters can be drawn by expressing 

Hl,N(f) and H2JN (f), the truncated Fourier series for Hi(f) and 

H2(f), respectively, in integral form. We expand Kl(f) and K2(f) 

in a Fourierseries, then truncating these series gives: 

f+( fT+fc l/2 HpN(f) = s KIJN( z)dz 

H2JN(f) = s K2~N( z)dz f- ( fT+fc l/2 

f 

(4.19) 

(4.20) 

Since KIJN(z) is the truncated series of a function with jump dis- 

continuities at 2 Af/2 [ see (4.9)], the Gibbs' phenomenon is present. 

Hence overshoot is present near + Af/2, the amplitude of which can 
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not be'reduced by increasing N. We ca.n expect some'relatively large 

oscillations to be-present, at least for small values of N, in 

HIJN(f). K2(z) is continuous, and the amplitude of the oscillations 

Of K2,N(T) d ecreases monotonically with increasing N. Hence we expect 

the Martin-Graham filter to perform better than the Ormsby (p=l) 

filter. The results of comparative programs where the truncated 

series (4.19) and (4.20) were computed at equidistant points indicate 

that this conclusion is true. For E = .Ol, over 5C$ more weights 

were required by the Grmsby filter. 

4.3 SCME NEW SMOOTHING FILTERS 

We shall give, without performing the details of integration, 

several new designs which are of some interest. 

Filter 3. Let 

(2/Af) cos2(nf/Af) IfI 5 Af/2 

K3(f) = 

lfl > 0 . 

(4.21) 

Then 

1 sin rrAft 
$(t) .= . 

l-Af2t2 waft 

h,(t) = k,(t)&) 
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1 
=c )( 

sin nAft sin fl(fT +fc)t 

l-Af2t2 rr2Aft 
2 1 

(4.22) 

where hi(t) is the Ormsby weight function (4.10). The roll-off of 

$0) is given by 

1/21-t sin 2a(f-fc)/Af + (fT-f)/Af fc < f ,< fTJ 

and H (f) has two continuous derivatives. 
3 

(see Figure 4.5) 

Filter 4. Let 

(3Jr/kAf) cos ' (rrf/Af), IfI ,< Af/% 

K4(f) = (4.23) 

Then 

9 cos rrAft 
k4(t) = . 

9-4Af$ 2 (1-kAf2t2) ' 

h4(t) = k4(tk(t) 

9 cos lrAft 
r * 

sin n(fT+fc)t 
= 

9-4-Af't' l-4Af2t2 nt 
I 
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.9 
= 

g-4Af2t2 
h2(t), (4.24) 

where h2(t) is the Martin-Graham weight function (4.13). The transfer 

function H (f) 4 has three continuous derivatives and the roll-off is 

given by: 

H4(f) = 2 cos ( 
i(f-f,) 1 

> ( 
3df-f,) 1 

- -cos > +- 
16 Af 16 Af 2 

for fc < f 5 fT. This is shown in Figure 4.5. 

0 1 Ha roll-off 

03 
z H roll-off 

0 3 H,+ roll-off 

FIGURF: 4.5 
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Let Filter 5. 

(4.25) 

This gives a weight function, where Af3 = (Af)', 

h5(t) = Lh [sin rr(fT+fc)t] * 12 sin srAft - 2nAft cos nAft ] . 
2n Af3t 

(4.26) 

The roll-off of H5(f), fc < f ,< fT, is a third degree polynomial and is 

essentially the same as that of r(f). 

Using the quantity E defined by (3.42) as a measure of the 

performance of a filter to compare the above filters, one is led 

to the following conclusions: 

1) 

2) 

3) 

The Martin-Graham filter gives E = .Ol with smaller N than 

any of the others. In fact, out of numerous designs none 

has been found which gives E = .Ol for smaller N than this 

filter. The performance of filter 5 is essentially the same, 

the E, values differing slightly in the third decimal place. 

Filters 3 and 4 give values of E 5 .005 for smaller N than 

the Martin-Graham filter and filter 5. 

In no case did the Ormsby filter perform as well as the 

other filters. 
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In comparison with the Martin-Graham filter, the only advantage 

filter 5 has is that no special eva.luation for hn, n /= 0, is required; 

ho is the same for all the above filters. In addition'to the improved 

performance for E < .005, useable error bounds can be found for filters 

3 and 4 rrithout resorting to empirical methods. 

4.4 SCME SMOOTHINGERROR BOUNDS 

Except for filter 5, each of the above weight functions are of 

the form 

h(t) =# 

where k(t) is an expression containing sums and products of trigono- 

metric functions of t and P(t) is a polynomial in t.. The Fourier 

coefficients of H(f) computed from h(t) retain this character, 

k(-n/fs) 
hn = (l/fs)h(-n/f,) = (lifs) P(* 

s 

Now the error as a function of f and N is 

E(V) = H(f) -s(f) 

= 2 c 
n=N+l 

hn cos 2n*(f/fs) 

k(-dfs) 
= (2/fs) c 

n=N+l P( -n/fs) 
cos 2nr(f/fs) . 

Letting A = max (k(-n/fs) cos 2nsr (f/fs) 1, we have 
n,f 
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.E =.max ,]E(f,N)I 5 (2A/fs) 
f 

L 1,&p-J I l 

n=N+l 
(4.27) 

If IP( > 0 for t > (N/fs), the sum in (4.27) can be approximated by 

Martin-Graham bound 

The above method gives (see Figure 4.6) 

ti2Af2 
E ,< l/n log 

4N2Af2-f 2 
S 

For E = .Ol, the predicted value of N is 

N 2 2.85 fs/Af 

and for E = ,005 

N ,> 4fs/Af = 4/~~ 

These values of N are much too large. It has been determined 

empirically that N > 1.25 fs/Af = l.25/rd gives .005 < E < .Ol. 

Filter 3. 

For this filter, 

E + { 1% [2] - 2fs,NAf }. 

(4.28) 

(4.29) 

(4.30) 

(4.31) 
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For E = .Ol, the predicted value of N is 

Nz2fs/Af = 2/~~, (4.32) 

and for Nz 3f,/Af = 3/rd, E C .003 (see Figure 4.6) 

Filter 4. 

For this filter 

EI & (g log [ 4n2N2Af2-fi2fs2 ] - 16 log 2rrNAf 

- log[k2N2Af2 - 9,r2fs2] 1. 

For E = .Ol, the predicted value of N is the same as in (4.32). 

For N 2 3fs/Af, (4.33) gives E < .OOlh (see Figure 4.6). 

(4.33) 

4.5 SMOOTHING FILTER CONSTRAINTS 

In general, a signal g(t) may have a polynomial content, and in 

such cases g(t) is not band-limited. Denoting the polynomial content 

cf g(t) by P(t), if 

g(t) = aa + p(t) 
where g(t) is a band-limited function, then 

strained so that the sampled values P(mAt), 

without error. 

the weights can be con- 

At = l/fs, are passed 

We recall that the output of a digital filter is given by 

(4.34) 

N 
r = m c hngm+n n=- N 
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E 

.020 

.OW 

.ol8 

.017 

.ol6 

.015 

.014 

.013 

.ol2 

.oll 

. 010 

-009 

.ooa 

l 007 

.006 

.W 

.oob 

.003 

.002 

,001 

I 
6; k 11 1; 

Figure 4.6 
WY/f 
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Applying this to the sampled version of (4.34) gives 

1” = 
m + p [(m+n)At]] 

N 
= 

c 
n=-N hnzm+n + $ h.P [(m+n)At] . 

nd$ n 

Since g(t) is band-limited, the first term on the right side of 

(4.35) poses no problems. We want the second term to be P(mAt). 

Assuming that P(t) is of degree p, 

P(t) = i a tj. 
j&l j 

We want 

P(mAt) = ; 
j=O 

aj(dt)j 

N 
= 

c hn i a.(m+n)jAtj. 
n=-N j=o J 

Interchanging the summation gives 

. 

We see from (4.37) that it suffices to consider the ,th term 

mkAtk = 5 h (m+n)kAtk 
n=-N n 

(4.35) 

(4.36) 

(4.37) 

k or dividing by At , 
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mk = nf, hn(m+n)k. 
-- 

Expanding (m+n)k and summing each term gives 

mk k k h + kmk-1 e =m nh+... 
n=-N n n=-fi n 

k k-r N 
+(,)a c n=-h 

nrhn + . . .+ (4.38) 

From (4.38) we see that it suffices to have 

A: 
N I 
c n=-i 

hn = 1 (4.39) 

B: N' . 

c nJhn = 0, j = 1,2, . . .,p. (4.40) 
n=-N 

The transfer function of a digital smoothing filter which approxi- 

mates smoothing filters of the types discussed in Section 4.1 is an 

even function of f and can be written in the form 

N 
H,(f) = ho + 2 

?L 
hn cos 2na(f/fs). 

n= 

The weights are related by hn = :I. Hence for odd integers j, 

nJh = 
n 

- (-n)jh-, 

(4.41) 

or 

njh, + (-n)jh-, = 0 
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and 

N . 
c nJh 

nz-8 32. 
0 

Thus (4.40) is satisfied for all odd integers j without imposing any 

'conditions on the h n' If(b.39) is satisfied, the filter passes a 

first degree polynomial exactly. If, in addition, (4.40) is satis- 

fied for j=2, the filter passes a third degree polynomial exactly, 

etc. Practical considerations usually limit j to 2, i.e., p=3. * 

The simplest way to satisfy (4.59) is to use new weights 

Yin = hn 
N 

c h 
n=-N n 

If N is chosen so that .005 < E 5 -01, the new weights usually do not 

change E significantly. 

For j > 2 the usual approach is to derive the constrained 

weights En so that the mean square error between the unconstrained 

transfer function HN( ) f and the constrained transfer function 

N 
S(f) =x0 + 2 1 Tncos 2nrr(f/fs) 

n=O 

is minimized. 

Note that (4.39) is equivalent to the condition 

S(o) = 1, 

(4.42) 

(4.43) 

(4.44) 

(4.45) 

and (4.40) is equivalent to the conditions 
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d>%(f) 

dfj I 
=o, l,<jLP. (4.46) 

f=O 

Taking the case p=3 and using a Lagrangia.n multiplier, we wish 

to find weights g 
n 

in terms of the hn such that 

fs/2 

R= 
s 

[s(f) - HN(f)] 2 df + h f n2xn 
n=l 

0 

aR is minimized, i.e., - = 
aT; 

0, 0 < m < N, and such that - - X&f) satisfies 

m 

(4.45) and (4.46) for p=3. 

fs/2 2L = 2 
ali s [qJf) - q&f) 

m 0 

The condition (4.45) is incorporated 

N 

aT$if) l- df + Am2. 
aZm 

in the following way: 

so 

Hence 

T&(o) = x0 + 2 c zn = 1, 
n=l 

N 
x0=1-2 c xn. 

n=l 

EN(f)-HN(f) = 1 + 2 E ( 
n=2 

En cos 2nsrf/f s -1) -HN(f). 

(4.47) 

(4.48) 
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Therefore 
a% -= 
8E 

2 (cos 2ml-c f/f 
S 

-l), 

m 

and 
fs/2 

aR=4 [l+ 2 aT; t 
n=l 

xn(cos 2nrr f/fs 7 1) - hoi 2 Eh cos 2nsrf/fs 1 
n=l n 

m 

[c.os 2md/f 
S 

- 1 ]df + )cm2. 

Let 8 = 2flf/fs > then df = (fs/2*)dB and 

aR - = 2fs/fl s;1-2 n&xn - ho+2 jl(xn-hn) cos nC3 
a75 

m 0 

] [cos mf3- 1 ]d8+Am2. 

s 
II 

= 2fJfl {[l-2 CNF; 
n=l n 

- ho][cos me-l] + 2 f(x,hn) CDS ne CDS me 

0 n=l 

-2 f (i; -hn) cos ne] de + Am2 
n=l n 

N 
= 2fs/n C-n[l - 2 

?L n= 
xn-ho]+ II (xm-h,)} + Am2. 

Setting this equal to zero gives 

N 
2fs [ho-l + 2 C Xn + Xm-h,J +hm2 = 0. 

n=l 

N 
From (4.48) we see that we can replace 2 c xn -1 by -To. 

n=l 
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Thus 

2fs{[ho-Eo + iim-hm]} + Am2 = 0. 

Let 6 = Eo-ho, then 

gm-hm = 6 A m2 
-2fs. (4.49) 

Swng both sides of (4.49) from 1 to N, then multiplying both 

sides by 2, and adding 6 to both sides gives 

6+ 2 fkm- 2 fhm= (2P&l) 6- kLm2 

m=l m=l 

or using (4.45) and reverting to the n subscript, 

N N 

(2IW) 6 - $- Ia = 1 - ho - 2 chn= (4.50) 
S n=l n=l 

Multiplying both sides of (4.49) by m2, summing fromlto N, using 
(4.46)--(or 4.40 with j=2) --and reverting to the n subscript gives 

N 
6 

1 
n2-$-Ln4=- fn2hn 

n=l = n=l 

We solve (4.50) and (4.51) for 6 and A . 

Let 

N 

&1 0 =1-h -2 
c 

hn 

n=l 

Q2 c = 'n2h n 
n=l 
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- 

I 

Then 

and 

N 

s1 = 
c 

n2 
n=l 

N 

c 
4 se= 11. 

n=l 

A 
2fsES1&1+mlk-J 

= (2N+l)S,-232 

6= Ql s2+2sl% 

(2w)s,-2s12 l 

Then 

go 
=ho+6 

and frcm (4.49), for n > 1 

En n2 =hn+6 -2rh 
s 

(4.52) 

(4.53) 

(4.544 

= hn + 
BS2+2SlQ2-n2[SlQl+(2N+l)ql 

2 . 
(m+1)s -2s 21 

Note that 

(2N+l)S,-2S12 = N(N+l)(2N-1>(21t+3)(2N+l~2 
90 

. 

The constraint for p-1 is obtained by letting h = 0 in (4.54b). 

Then we have 

';n =hn+S, n=O,l,...,N 
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where 
N 

l-ho-2 hn 
c 

6 n=l * = 
2N+l y$p?) = 2N+l l 

4.6 BAND-PASS FILTER 

The ideal single band band-pass smoothing filter transfer function is 

f > fc. (4*55) 

See Figure 4.7. 
BI( f) 

--1 

I 
'Tc 

I I I ‘f 

-fc Figure 4.7. fc % 

Note that B&f) can be written as the difference of two ideal smoothing 

filter transfer functions [see (3.6)] Hi(f) and H2(f), where H2(f) 

has cut-off Fc and Hi(f) has cut-off fc. Then the weight function 

b(t) is b(t) = h2(t) - hi(t) (4.56) 
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where 

hi(t) -Hi(f), 

and 

b(t) H Bl(f). 

A useable design is obtained by taking the difference of two 

low-pass smoothing filters of the types discussed in Section 4.1 and 

Section 4.3. The difference of two Martin-Graham filters, each with 

roll-off length Af gives a satisfactory filter. The weight function 

of the resulting band-pass filter is then given by (4.56) with hi(t) 
and h2(t) the weights of the Martin-Graham filters. The weights of 

the corresponding digital filter are given by (3.40) and (4.56), 

bn = 5 b(F) 
S S 

= 5 [h,(p) -hl($)]. (4.57) 
S S S 

Now suppose B(f;fo) is a band-pass smoothing filter with the 

mid-points of the "pass bands" at + f 
0’ 

llpass bsnd" width @, and 

roll-off width af. For purposes of illustration, we assume that 
B(f;fo) has the Martin-Graham type roll-off [see (4.1811. Let 

H(f) = $l+ cost] Z<fsZ+fV (4.58) 

See Figure 4.8. 

0 f > z+!!V 

H(-f) f<O. 
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; H(f) 

1 

I I AC -f 
Af Af+fw 

Figure 4.8. 

Then H(f) is the transform of 

h(t) = sin 21cZ + sin 2a(Af+Z)t . 

2*t(l - 4Af2t2) 
(4.59) 

For f 2 0 

B(f;$) = H(f - fo), 

and for f < 0 

Thus 

B( f;fo) = H(f + &). 

B(f;fo) = H(f - fo)+H(f + fo), (4.60) 

(see Figure 4.9). 

Figure 4.9. 
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Taking the inverse transform of each side and using the shif't theorem 
(1.22) -(or its generalized equivalent) gives 

b(t;to) = h(t)(exp(2aifot) + exp(-2nifot)) 

= 2h(t)cos 2fifot. 

The weights of the corresponding digital filter are given by 

b,( f. ) 
fO = 2hncos 2x7, 

S 

where hn = $ h($). 
S S 

For a given PO, the weights can be computed 

quickly than fran (4.57). If several successive 

(4.61) 

(4.62) 

from (4.62) more 

filtering operations 
are to be performed for a set of f. values, say fl,f2, l l 4-p 

then, using (4.62), 

f. 
bn(fj) = 2hncos 2n+ , 

S 
j = 1,2, . . .,k. 

But in order to use (4.57) the functions hi(t) and h2(t) must be 
changed for each new value of f. 

J 
and the entire expression must be 

recomputed. 

From (4.62) we see that the error E' of a band-pass smoothing 
filter may be as much as twice the error E of the smoothing filter 

whose transfer function is H(f). 
In a manner analogous to the ideal smoothing case in Section 3.1, 

the transfer function of a filter which will simultaneously 'band-pass' 

filter end find the _th derivative is 

Bn(f) = (2nif)n B(f) (‘+.63) 
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where B(f) is the transfer function of a band-pass smoothing filter, 
Then if b(t) c---, B(f). 

btn)(t) = bn(t) t--3 B"(f), (4.64) 

and the weights [see the derivation of (k.jb)] are given by 

where 4r 

The 

of equal 

(4.61). 

d% %" = (-l)n(fs)n 7' 
dk 

= $ b($). 
S S 

weight function of a filter having several pass bands, each 

pass width and roll-off width, can easily be found from 

Let fi fl, + f2, . . ., + fk be the mid points of the pass 

(4.65) 

bands, and denote the transfer function by B(f;fl,f2, . . .,fk) 

(see Figure 4.10). 

t 

B(f;fl,f2, . l .,fk' 

Then the weight function is 

f,=2{? b(t;fl,f2, . l 0, k cos 2?rfjt) h(t). 
jkl 

(4.66) 
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The weights are given by 

bn = & b(p; fl,f2, . . .,fk) 
S S 

k 
= 2hn( 

c 
cos 2nlf $1. 

j=l S 
(4.67) 
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FILTERS FOR SMOOTHING AND DIFFERENTLATION 

2.0 MARTIN-GRAHAM FILTERS 

We shall call a filter a Martin-Graham filter if its tra.nsfer 

function either uses the Martin-Graham roll-off [see (4.18)] or is 

derivable from a transfer function ha.ving the Martin-Graham roll-off. 

In Section 4.1, we discussed the Martin-Graham smoothing filter 

and found its weight function h(t) [see (4.13)] . From h(t) and the 

formula (3.40) for computing the weights of the approximating 

digital filter, we found the weights hn [see (4.15)]. which are used in 

the basic formula of digital filtering, 

N 
r = 

m c 
n=-N hngm+n' (3.41) 

where the g. a.re the input data va.lues and the ';: are the smoothed 
J j 

output va.lues. 

A Martin-Graham ba.nd-pass smoothing filter is easily obtained 

from the smoothing ca.se and the discussion of Section 4.6. 

In this chapter, we shall derive the weights of Martin-Graham 

filters for smoothing and differentiation. When referring to a set of 

data km], we assume that the data arises from a function g(t) such 

that 

1) g(t) =aa + p(t), where p(t) is a polynomial in t, 

2) g(t) satisfies conditions I - III of Section 4.0, 

3) s = g($-) where fs is greater than twice the highest 

frequent; in g(t). 
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Let go be the first data value and s be the last. If p(t) is not 

M identically zero for f < t < 3 

S- 
_ ~~ then, in order to pass p(t) or 

S 
differentiate it, constraints are necessary. Those for smoothing are 

in Section 4.5. A general procedure is given in Appendix A for the 

derivative cases, and the constraints for passing the first deriva- 

tive of p(t) will be given in the next section. 

7.1 SMOOTHING AND FIRST DHHIVATIVE FILTER 

We have shown the transfer function of a filter which will 

smooth and find the first derivative to be 

Yl(f) = (2aif)H(f) 

where H(f) is any smoothing filter transfer function [ Put n=l in 

(4.2)] . Note that Y'(f) inherits the cut-off, f 
C’ 

and termination, 

fT, frequencies from H(f). 

Putting n=l in (4.3b), we obtain the weights of this filter in 

terms of the smoothing weights 

1 dhk 
Yk = -fs dk 

where h(t) -H(f) and hk = $ h(+ ). 

The Martin-Graham smoothingsfilteE weights giren by (4.15) in 

W f 
terms of the frequency ratio, I- = - = - 2rrfs fs' are 

hk = 
cos kJrTd sin lm(2Tc + -I~) 

kfi( 1-4~,~k~) 

sin 2r(TTk + sin 2r(Tck 
= 

2nk(l-4Td2k2) 
> 

(5.1) 

Af fc fT Td = 7' -Tc = f , TT = f. 
c S 
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Then 

1 
Yk = -fs 

TT cos 2JrTTk + T 
C 

cos 2r(Tck h (1-12~,~%~) 
- k 

k(l&d2k2) k(1&d2k2) 

= -f TT cos 2JrTTk + 7 
c 

cos 2nTck -hk(l-12Td2k2) 

S k(1&d2k2) (5.2) 

Note that ytk = -yk, and by applying L'Hospita.1'~ rule 1 
' Yo 

= 0. 

1 Also note that for k = 27, yi must be computed by using L'Hospital's 
d 

rule. [See Section 5.4. ] 

In a manner analogous to that of Section 4.5, we find that in 

order to pass exactly the derivative of P(t) of degree p the following 

conditions must be satisfied by the approximating filter transfer 

function 

Y:(f) = 2i 
N 
C yi sin 2nnf/f 

n=l S (5.3) 

(1) Y;(o) = 0 

dy;( f ) 
(2) df = i 

w=o 

aPyl(f) 
(3) N 

dfP 
=0 forp>l. 

dpY1(f) 
Since N 

dfP 
is odd for all even p 10, (1) and (3) are automati- 

tally satisfied for even integers p > 0. In particular, if p(t) is 

of degree 2, we need to satisfy only (2). The constrained weights 

-1 yk are given by 

-1 
'k k > 1, (5.4) 
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where 

N 

SC 
I n2 . 

n=l 

(See [aI for the derivation for p=4 
easily.) 

from which the case p=2 follows 

The constrained transfer function is 

+I 
T 

1 
= 2i yn &+22 (5-5) 

n=l 
S 

In order to smooth and differentiate a set of data bltJ 
where the 

1 
polynomial content is of degree 2 or less, put hngn in (3.41). 
This gives 

N 

c 

1 
r = m 'n gntbn l 

(5.6) 

n=-N 

1 

If we let A$ = > , then+: 

1 

'k /\I -k =fandg =f. k Then 
S S G 

1 
TN(f) = 2ifs 

NAl 
c 

2nflf yk sin - (5-7) 
n=l fS 

and 

r 
NAl 

m = fs 
c % %rl- (5.0) 

n=-N 
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!f I?- 
Using xn = 'yn, we have N A1 

r =f 
m S c 

n=l 
Jm [ gm+n ‘gm-n I . 

Writing 

Y1(f) = 2JrifH(f) = 2rcfH(f) exp(i.Jr/2),. 

we see that Y'(f) has a phase shift of IT/~ = go', i.e., 0(f) = 142. 

2rtfH(f) is shown in Figure 5.1 for the Martin-Graham smoothing and first 

derivative filter. 2zfH(f)l 

(5.9) 

-fT -fc 
Figure 5.1. fc 'T 

Other first derivative filters with different roll-offs have 

been examined and in each case it was found that the Martin-Graham 

filter yielded the same or a more accurate result. 

In an attempt to avoid the lengthy computation of (5 .l) for 

the weights y:, a "three-point derivative" of the smoothing weights 

hk has been examined. Let 

8 = hk+l -hk-1 
k 2 

;r I 
S 

With H(f) the transform of the weight function h(t) from which the 

hk are computed, we have 

(5.10) 

'k 
fS 

=2 chk+l-hk-l 1 
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= l/2 [h((-k-l)/fs) -h((-k+l)&)] 

fs/2 
= l/2 

s 
H(f) [exp(-2ai(k+l)f/fs)- exp(-25ri(k-l)f/fs)] df 

-fs/2 

fs/2 
= l/2 s 

-fs/2 

H(f) exp(-2srikf/fs) [exp(-21rif/fs)-exp(2nif/fs)]df 

fs/2 

= 
s 
-fs/? 

[ 
exp(2fiif/fs) - exp(-2fiif/fs) 

2i I[ -iH(f)exp(-2sikf/fs)] df 

'k = l/f 
S 

[(211if)H(f) lcxp(-2rcikf/fs)df. (5.11) 

The actual weights are 

q-2 
1 

'k= s l/f 
s 

(2nif)H(f) exp(-2flikf/fs) df 

-fs/2 

(5.12) 

Comparing (5.11) and (5.12), we see that if we define a weight 

Yk = -ek, then the transfer function of the y is 
k 
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sin 2flf/f 
&&(2*if)H(f) 

which is the product of the desired transfer function and 

sin 2fif/f 

2rflfs* 

Now 

1. 
'k 

+fk = 

and 

s 

fs/2 

l/f 
sin 2nf/f 

S 

-fs/2 

(2aif)H(f)[l-d]exp(-2rrikf/fs) df 
S 

sin 2Jrf/f 

IL- xq?f A0 

for If/fJ small. If the cut-off fc is small, then H(f) in the above 

integral becomes zero for f/fs relatively small. Then the yk are 

good approximations of the yk. It has been found empirically that 

for filters such that fc/fs 5 -1, the yk give an acceptable output. 

7.2 BAND-PASS SMOOTHING AND FIRST DERIVATIVE FILTER 

We have shown that the transfer function of a band-pass filter 

which will smooth and find the first derivative to be 

B'(f) = 2lrifB(f) 
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where B(f) is my band-pass smoothing filter transfer function 
[put n=l in (4.63)] . Note that B'(f) has the same cutoff 

and temination frequencies as B(f). B(f) may be designed by either 
of the methods discussed in Section 4.6. 

Putting n=l in (4.651, we obtain the weights of this filter 
in terms of the band-pass smoothing weights 

b’=-f d4x. 
k s 4. 

where b(t) H B(f) and bk = 

If the bk are obtained by taking the difference [see (4.57)] 
of the weights of two low pass filters, say $ and q, then 

(5.13) 

When the bk are obtained by the second method [see (4.62)], 
we have 

= -2fs 
-hk2nf 

fS 

osin zkl p + 20s dk 
S 

= 4afollpin 2kn> 9c f. -2fswos 2kYrf . 
S S 

(5.14) 

To obtain a Martin-Graham filter of this type by the first method, 
we simply select two Martin-Graham smoothing filters with transfer- 

weight functions h'(t) M H'(f) and h"(t) H H"(f) and compute 

the weights 4 by (5.13). To use the second method, the appropriate 
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M&tin-Graham filter tiith h(t) f--, H(f) is selected and the weights 
$ are.ccmputed by (5.14). These weights are used for.the \ in 
(3.h). Note that a factor of fs caz? be removed from the sum (3.41) 
in a manner analogous to the first derivative case [see (5.7) and 

(5-W. 

(a) Smoot~g transfer functions 

(c) Derivative transfer functions 
derived From II' and H". 

(b) Band-pass: H"(f) - H'(f) 

(d) Band-pass derivative: 
Y2(f) - Yl(f) 

Figure 5.2. 

. 3 SMOOTHING AND SECOND DERIVATIVE FILTER 

Letting n=2 in (4.2), we find that the transfer function 

of a filter which will smooth and find the second derivative is 

S(f) = -(2fifyH(f) (5.15) 
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where H(f) is any smoothing filter transfer function. 

Putting n=2 in (4.3b), we find that the weights of the 

filter in terms of the smoothing weights are 

2 
'k (5.16) 

where h(t) M H(f) and hk = + h($). 
S S 

Using the Martin-Graham smoothing weights given by (4.15) in 

W f 
terms of 7 =2nf =f and (5.16) gives 

S S 

2 
Yk = 

k(l-4T;k2) 
24~;% 

2Y1 
+ -$(1-12~~ 2k2)-2n(T; sin 2aTTk 

S 

+I- 
2 c Sin 2flTck) 

> 

(5.17) 

where yi is given by equation (5.2). This gives the weights to 

be used in (3.41). Note that a factor of f: may be removed in 

this case. 

For k=O, using L'Hospital's rule gives 

For k =& , 
d 

L'Hospital's rule must be used to compute hk. [See 

Section 5.4.1 

A constraint is developed in Appendix A to improve the fit of 

(5.18) 

the approximating transfer function at some specific frequency 

ratio 7. 
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5.4 FIRST AND SECOND DEEUVATIVE WEIGETS FOR 1/2~~ AN lY'l%m 

In cases where 7d is such that 1/2~~ is an integer, say m, then 

hm, h,,, Y$ yt,, YE, and of assume the indeterminate form O/O and 

these weights must be computed by using L'Hospital's rule. The value 

of hm in this case is given by (4.17) and hWm is obtained from 

hm 
= h,,. 

Application of L'Hospital's rule to the first derivative weight 

expression yi when m = 1/2~~ yields 

Y; = (fs/2)f~Td(Td+2TC)sin(*Tc/Td) + (3’+)COS(flTc/Td)] (5.19) 

The first derivative weight function is odd, and hence we have 

Application of L'Hospital's rule to the second derivative weight 

expression y2 = 1/2~~ yields 
m 

YE = f;fj~T~(Td+2TC)Si&TC/Td) 

+ (7T;-2f12[ TCTd(TCfld)+T5a/5] ) COS(XTc/Td)} 

The second derivative weight function is even, and hence we have 

(5.20) 
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cHAm VI 

FILTERS FOR INTEGRATION AND INTERPOLATION 

6.0 INTEGRATING FILTERS 

Let A exp(2aift) be a component of an input to a filter. Assuming 

that the constant of integration is zero, the indefinite integral of 

this component is (2aif)-1A exp(2rrift). If this is to be the output 

of the filter, then, using (3.3), we find that the transfer function 

must be 

X(f) = (27cif) -1 
(6.0) 

Suppose that g(t) is the input to a filter, and that g(t)-(f). 

Letting k'(t) = g(t), assuming that the constant of integration is 

zero, and that k(t) satisfies conditions sufficient for the Fourier 

integral theorem to hold, we have 

k(t)<-*2nif)-lG(f). 

If we also smooth, we have 

J&) M(2nif)-?H(f)G(f) 

(6.1) 

(6.2) 

where H(f) is the smoothing filter transfer function. From (6.2) 

we see that the transfer function of a filter which will simultaneously 

smooth and give the indefinite integral is 

Y(-l)(f) = (2aif)"H(f) (6.3) 
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Note that the smoothed output, g(t), of the smoothing filter 

acting alone on g(t) is the inverse transform of H(f)G(f),and 

that 

s t T(t) = &)dB 
a 

where we.assume x(a) = 0. 

For the transfer functions, Hj(f), j=1,2, . . . . 5, of the 

smoothing filters discussed in Chapter IV, Y (-l)(f) has an 

infinite discontinuity at f=O. Hence, in order to approximate 

Y(-l)(f) with a truncated Fourier series, we must modify Y (-l)(f) 

on an interval containing zero. To avoid some integrals which cannot > 

be evaluated in closed form, we shall consider only the case j=l, 

i.e., an Ormsby type f .lter. 

Let Af > 0 and 

f(Af)-2 , 

Y(-l)(f) = (2ni)-' 

(6.4) 

(6.5) 
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and Y(-')(-f) = -Y(-l)(f) for f 

liY(qf) 

where 

< 0. See Figure 6.2 

The weights 
f 

7 =- 
C f;' 'T 

J -1) 
n 

in terms of the frequency ratio 7 = 

fT =- 
fSJ 

are 

1 = 
2 

2lI Tdfs c cos 2n3vTd 

n 

sin 2nsr7 d 

2nTdn2 

f Af 
f' Td = f' 

S S 

'd 
cos 2nlr7 

C 
(sin 2nn-r 

+ T - sin 2n7f7c) 

v 2nTcn2 

- 2fl7d [Si (2nxTc) - Si(2nfiTd)l 1 , 

X 

Si(x) = s m C-1) i+&y= c 
k+lx(2k-1) 

0 
,-,-(2k-1)!(2k-1) ' 

A definite integral 

From (6.4) we have 

T(t+a) - TT( 

ti-a 

-a) = 
s 

~(B)dB, 

(6.6) 

t-a 
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and by (6.2) and the First Shifting Theorem, 

E(t+a) - F(t-a) W (21tif) 
-1 

G(f)H(f)[exp(2 fliaf) exp(-2fiiaf) 1 
or 

K(t+a) - E(t-a) V -Faf H(f)G(f). (6.7) 

Thus, if H(f) is a smoothing filter transfer function, the transfer 

function of a filter which will simultaneously smooth and give the 

integral of the input over [t-a,t+a] is 

(6.8) 

Let 

then 

1 

I 
Itl I a 

x(t) = 

0 ItI >a J 

x(t) e X(f) = 
sin 2naf 

nf l 

Applying the convolution theorem gives 

Y (-l)(t) = Jmh(z)x(t-z)dz 
-CO 

t+a 

= 
s 

h( z)h 
t-a 

a 

J 

\ 
= h(t-z)dz 

-a 

where y(") (t) - Y(")(f) and h(t) W H(f). 
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By (3.40), the weights of the corresponding filter are 

$ +a 

Is y(‘l) = 1 
n 

fS 
s 

h(z)dz. 

-n 
7 -a 

(6.12) 

Choosing hi(t), the Ormsby smoothing filter weight function, we have 

I -.------~-- .-. t(sin 2xfct sin 2xfca-sin 2flfTt sin 2nfTa) 
Y (-qt) = A& 

n(t2-a2) 

+ 
a(cos 2flfct cos 2nfca - cos 2nfTt cos 2nfTa) 

n(t2-a2) 

(6.13) 

- fc[Si(2xfc[t+al) - Si(2nfc[t-al)] 

+ fT[Si(2nfT[t+al) - Si(2xfT[t-a])] . 
1 
J 

Using the frequency ratio7 = C 
fS’ 

letting a = b and computing 
fS’ 

the weights by (3.40), we have 

y(-l) = 1 211x7~ sin 2r(Tcb - sin 2nrrTT sin 2n'rTb) 

n x27 f ds (n2-b2) 

b( cos 2mTc cos 2flcb - cos 2nflT cos 2xTTb) 
+ __-. 

(n2-b2) 

- mc[Si(2flTc[n+b]) - Si(2nTc[n-b])] 
(6.14) 

+ xTT[Si(2xTT[n+b]) - Si(2flT[n-b])] . 
I 
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6.1 INTERPOLATING FILIFXS 

If g(t) is' a function with Fourier transform G(f), then by 

replacing to by -to in (1.21) we obtain 

g(t+to)V(f)exp(2nitof) (6.15) 

From this and (3.5), we see that the transfer function of a filter 

with output g(t+to) is 

G(f)exp(2xitof) 

G(f) = exp(2nitof) 

Suppose that g(t) is band-limited, and let h(t) M(f) be the weight 

and transfer functions of a filter, then 

g!t+to)&) N(f)exp(2nitof)H(f) 

But applying (1.21) to h(t) as we did to g(t) above, we have that 

. 
h(t+to)MH(f)exp(2*itof). 

Hence 

dt )*h(t+to) W(f)exp(2*itof)H(f) 

Comparing (6.16) and (6.18), we have 

g(t)*h(t+to) = g(t+to)*h(t) (6.19) 

(6.16) 

(6.17) 

(6.18) 

From this we see that the operations of filtering and shifting the 

output by a constant to can be accomplished by shifting the weight 

function by to. Letting g(t) denote the smoothed output of the 
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filter with weight function h(t), we have 

g(t) = g(t)*h(t) 

and 

;(t+t,) = g(t)*h(t+to) (6.19) 

Now g(t+t,) is the output of a filter with transfer function 

exp(2zitof)H(f), and from (6.17) we see that the corresponding weight 

function is h(t+to). Then from (3.40), the weights of the filter are 

xn = (l/fs)h(-n/fs + to) (6.20) 

The corresponding digital filter has for its output 

N 
z;= c 

n=-N 'ngm+n (6.21) 

where g' m is an approximation of g(m/fs+to), that is, it is an inter- 

polated value of g(t) between Em and Em+l for 0 < to < l/fs. 

Note that (6.21) uses only the assumed known sample values gn 

of the input g(t). The weights xn are computed from the known weight 

function. Also, it is important to note that the weights are no 

longer either even or odd functions of n, that is, z-n # x,' and 

Tin f -TYn. 

Choosing h(t) to be the appropriate Martin-Graham weight function, 

and using (6.20), we may compute weights to simultaneously smooth and 

interpolate; smooth, differentiate, and interpolate; or band-pass 

filter and interpolate. 
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In the first two cases, if the cutoff frequency can be chosen 

greater than the largest frequency fP present in the data, that is,. if 

fB ,< fc < fs/2, then choosing fT = fs/2 to maximize the roll-off 

length, we obtain filters which interpolate for raw data values between 

known data values in the first case, and which differentiate and inter- 

polate without smoothing in the second case. 

There is a relation between the weights for interpolating with 

to > 0 ard the weights for interpolating with th = -to which is some- 

times useful. Suppose the weight function h(t) of the original filter 

is an even function of t. Then 

xn = (l/fs)h(-n/fs + to) = (l/fs)h(n/fs -to) = 51, (6.22) 

where the ';L, are the weights for interpolation with to replaced by 

-to. When X-,, X-N+l, . . . . , XWl, Eo, h,, . . . . , 'N-lJ -$ are 

the weights for interpolating with to > 0, then the weights for inter- 

polating with to replaced by -to are TIN =-s, xIN+1 = KN 1, . . . . , 

Xl -1 = x1, ';A = x0, q = Eel, . . . . ) Tit 
N-l 

=; -N+l' '; = '-N' 

For h(t) an odd function of t, we obtain the relation 

xn = -‘;I,. 

As was the case previously, when using Martin-Graham filters for 

filtering and interpolating, there are values of m, 7a, and to which 

make the denominator of the weight expressions zero. In these cases, 

the weights xrn require special attention. Letting to = O/fs in the 

weight expressions for these filters, we see that this will be true 

when m is an integer such that 

(6.23) 
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m-Q = 0, or m-Q = + (1/2Ta) (6.24) 

Using the Martin-Graham smoothing weight function (4.13), the 

weight equation (6.20),,and replacing t bY OS' we find that the 0 

weights for smoothing and interpolating are 

Tin = 
cos( Jr-ra(n-Q)) sin(fl(2Tc+Ta)(n-@)) 

.- 
Jr(n-@)(l - 47z(n-@)2) 

(6.25) 

We now see that no special evaluation of this expression when (6.24) holds 

is necessary. That is, the values of m-Q given in (6.24) are those which 

make the denominator of (6.25) zero and we have already determined what 

the value of this expression is in this case. These' are given by (4.16) 

for m-0 = 0 and by (4.17) for m-0 = + (1/2.~~). Hence, for m = @, 

Km = 2Tc + -ra ) 

and for m = 0 t (1/2Ta)> 

Tim = (-ra/2) cos( mJTa) . 

Similar reasoning applies to the derivative filters. In Chapter VII, a 

sample program and some tabulated results for smoothing and interpolation; 

smoothing, first derivative, and interpolation; and smoothing, second 

derivative, and interpolation are given. Values of @ used there are .25 

and .5. This corresponds to interpolation for values one-quarter and 

one-half the length of the sampling interval from known values, respec- 

tively. A check for the special cases in (6.24) is included in the 

program. 
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CHAPrER VII 

APl?LIc~IoNS 

7.0~ EDITING AND BI'JBMINATION OF DIGITAL FILTER PARAMETERS. 

In order to.apply a digital filter to a set of data 
1 I 

I# , 

we assume that the data values are obtained by taking equally spaced 

samples of a function g(t) which satisfies the three conditions of 

Section 5.0. A variety of problems may arise from the methods used 

to obtain the samples, and editing may be necessary. Conrmon problems 

are missing values and "bad" values, i.e., values grossly in error. 

Since these can affect the output considerably, it is important to 

replace them in some manner. The c-n practice is to consider the 

"bad" values as missing values and then replace each missing value 

by linear interpolation between the nearest data values on each 

side of the missing value. (See 61~1). 
Next, the following parameters must be determined: 

A. 

B. 

c. 

D. 

E. 

The largest frequency, f 
B' 

which is present in the data. 

This is cohnonly found by visually determining the shortest 

period in the data. 

The sampling frequency, fs, which must be at least 2f . 
B 

The cut-off frequency, fc, which is chosen to be at least 

as great as the highest frequency of interest present in 

the data. 

The termination fkequency, fT. This should be chosen such 
that either, (1) no frequencies present in the data are in 

the interval (fc,fT) or, (2) frequencies appearing in (fc,fr) 
have no significant amplitude. 

The value of N and hence the number of weights, 2N+l, of the 

filter. 
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E'rom the above, the corresponding frequency ratios may be found 

frar =g. fc fT Af Thati~,7~=f,7T=f,7~=f* 
S S S S 

7.1 APICAL ERROR BOUNDS FOR MARTIN-GRAHAM FILTERS 

Wpirical error bounds are found by recovering the digital 
filter's transfer function, i.e., computing 

hnexp(2nrtifj/fs) 
n=-N 

j=1,2, . . ..k. for various values of the parameters of Section 7.0. 

The recovered values are then ccaqpared with the designed or ideal 

transfer function values at the f.. 
J 

An expression for the error E 

is then determined in terms of N and the other parameters. 
The following error bounds were obtained by transfer function 

recoveries and comparison with bounds obtained by the method of 

Section 4.4. 

I. Martin-Graham smoothing filter. 

For a maximum error E [see (3.43)l of about .Ol, take 

,>1.25= 
1.25fs 

'd Af (7=1) 

This gives a maximum error of 1% (E referred to unity) between 
the actual transfer function and the designed transfer function. 

Note that the error does not change with TV, 7d held constant. 

The bound given by the method of Section 4.4 was compared 
with the results of computation with 7c values ranging from 

.025 to .2, 7d values ranging from .021 to .ll, and N values up 
to 100. It was found to be about 5 times too large. Hence, in 
terms of the frequency ratio, 

(7.2) 

where "log" denotes the natural logarithm. 
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II. Martin-Graham first derivative filter. 

Comparison of recoveries for f 2 fT, i.e., where 9(f) 
is ideally zero, and the bound obtained by the method of Section 

4.4 yielded, over the sane range of fkequencies ratio and N 

values given above, the expression 

f 
E' :+ KTc+TT) log 

III. Martin-Graham second derivative filter. 

42Td2 2 

4$Td2-l + nN(4N2Td2-l)' l 

(7=3) 

As above, the following expression was found 

7 +T 
E" c T 

+ N( 4Iy2rdz_1)'* 
(7.4) 

IV. Martin-Graham band-pass filters. 

The error can be as much as the sum of the errors in the 

law-pass filters from which the band-pass filter is derived (see 

section 4.6). Hence, in band-pass smoothing the error may be 

twice that obtained with a law-pass smoothing filter having the 

ssme roll-off length Af. 

The values of E' given by (7.3) become too large for small 7d, 
but are still useable for ~~=.021. The values of E" given by (7.4) 

are too snuall for large 7 dandsMIT. The actual value msy'be as 

much as $ E" for 7d values from .07 toC.ll and Tc values of .025 to 

.07. However, it is still useable. E' and E" are values for the error 

on the rejection band If/ 3 fT (171 1~~). The error on the &s-band 

I4 < fc ( IT1 s TJ i s essentially the same. For the first derivative 

filter, the amplitude at fc ideally is 2xfc = 2nfs Tc. For an error 

of 1 k of 2xfc, we need 
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E' =.ol(2rrfs'c) 

= ( .02)mcfs 

= (.08)(&. 

Comparing with (7.3), we see that N must be taken such that 

2 2 

( .08)mc A bc*T) log 
llN Ta 2 

4N27d2-l + nN(2N2~~~-1) 

For the second derivative, the amplitude at fc ideally is 

. 

4112f c2= 

4fi2fsTc2. Similar to the above, we find that for an error of 1% 

2 2 
of 4fl fc , we need to take N such that 

(.o~)Tc~T~~ ; .(T~~ + 7T2) log 
4N2T 2 

a2 + 
Tc+T T 

487, -1 N(b 2 Ta 2-l) 

7.2 SAMPLE PROGRAM AND RESULTS FOR THE MARTIN-GRAHAM SMOOTHING AND 

DERI-VATIVE FILTERS 

When the data has been edited and the parameters of Section 7.0 

have been determined, the filtering can be performed. The weights of 

the filter are computed from the appropriate weight expression and 

(3.40). If the data has a polynomial content, then these weights are 

constrained appropriately (see Section 4.5, Section 5.1, and Appendix 

A). Finally, the output of the filter is computed using (3.45). 

As an example, we take as the input function 

g(t) = altos 2flftlt + a2sin 2nf2t + a3cos 2nf3t + a4 

(7.5) 

(7.6) 

(7.7) 
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Using the Martin-Graham filters, in this section we shall perform the 

operations of smoothing; smoothing and finding the first derivative; 

and smoothing and finding the second derivative. The same function will 

be used in the next sections for interpolation and integration. The 

time-sampled version of g(t) is 

gn 
= g(n/fs) = altos 2rrfln/fs+ a2sin 2zf2n/fs + a3cos 2srf3n/fs + "4, 

and going to the frequency ratio, 7 = f/f 
S’ 

we have 

gn = alCoS 2Jrn7 1 
+ a2sin 2flnr2 + a cos 

3 2fin7 + a 3 4’ 

The following program was run in extended precision (10 digits) 

on the IBM 1130 computer. The program is sectioned by comment cards 

which state what each part of the program computes. Table 7.1 gives. 

the frequencies used for the various runs. In each run, the input 

component with frequency f 
3 

is to be removed by the filters. 

Table 7.2 gives the frequency ratios, coefficients of the terms in 

(7-W coeffictents of the terms of the desired output, and the 

parameter values for each run. The value of N used, and hence the 

number of weights for each run, is given by the last two digits in 

the run number. That is, Run 2.20 reads,'Run 2 with N = 20". The 

symbolism selected for the program is as follows: 

FS: The sampling rate fs. 

HO: The center smoothing weight, ho. 

DDHO: The center smoothing and second derivative weight, yz. 

H(1): The smoothing weights h i, i # 0. 

DH(1): The smoothing and first derivative weights y:, i f 0. 

DDH(1): The smoothing and second derivative weights y$ i # 0. 

(7.8) 
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TFl: The recovered transfer function for smoothing. 

TF2: The recovered transfer function for smoothing and the first 

derivative (divided by 27~). 

TF3: The recovered transfer function for smoothing and the second 

derivative (divided by 43x2). 

z(1): The input samples gi. 

R(1): The desired smoothed output (used for headings for both 

desired and actual outputs). 

DR(1): The desired smoothed first derivative output (used for 

headings for both desired and actual outputs). 

DDR(1): The desired smoothed second derivative output (used for 

headings for both desired and actual outputs). 

The ai, -ri, etc. are denoted by AA, RA, etc., AR, RR, etc. in the program. 

The following weight properties are used in the program: 

1) Smoothing: hmn = hn, 

2) First derivative: yt, = -yi, 

3) Second derivative: y2 -n 
= yz. 

The results for each run follow the program. In each run, one term 

of the input is to be removed by filtering. The desired output is ob- 

tained by taking the coefficient of that term in (7.8) to be zero. 

Some of the frequencies were chosen near cut-off and termination of the 

filters. This is where the largest error is obtained in the transfer 

functions. See Figure 7.1 and Figure 7.2 for graphs of the recovered 

transfer functions, the input, and the smoothing filter output. The 

output of the smoothing filter is so near the desired output that they 

coincide in the scale of the figure. 

Tabular values for Run 3.20, Run 4.30 and Run 5.30 are used in the 
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next section on interpolation and are not used in this section. The 

values for Run 1.20 and Run 2.30 are used in both the sections. 

FREQ. RUN 1.20. RUN 2.30 RUN 3.20 RUN 4.30 RUN 5.30 

fl 

f2 

f3 
fS 

fc 
Af 

fT 

-5 -5 -5 -5 .5 

-9 2.0 -9 2.0 -9 
2.0 4.0 2.0 4.0 2.0 

10.0 10.0 10.0 10.0 10.0 

1.0 2.0 1.0 2.0 1.0 

.6 .6 .6 .6 .4 
1.6 2.6 1.6 2.6 1.4 

FREQ. PROGRAM 
RATIO SjGMBOLS 

Tc TC 

7T RT 

ra * 

T1 
RA 

72 RB 
73 RC 

a1 
AA 

a2 
A0 

a3 AC 

a4 AD 
BA* 

BB 

BC 

BD 

0 TX 

Table 7.1 

*HA, BB, EC, 

PARAMETER VALUES 
RUN 1.20 RUN 2.30 RUN 3.20 RUN 4.30 RUN 5.30 

.l .2 .l .2 .l 

.16 .26 .16 .26 .14 

.06 .06 .06 .06 .04 
-05 -05 *05 *05 -05 
-09 .2 -09 .2 -09 
.2 .4 .2 .4 .2 

1.0 1.0 1.0 1.0 1.0 

1.0 2.0 2.0 2..0 1.0 

-5 1.5 -5 1.5 -5 
-5 1.0 -5 1.0 -5 

1.0 1.0 1.0 1.0 1.0 

1.0 2.0 1.0 2.0 1.0 

0.0 0.0 0.0 0.0 0.0 

-5 1.0 -5 1.0 -5 
.25 -25 -5 -5 -5 

Table 7.2 

and BD are the coefficients for the desired outputs. 
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C SAMPLE PROGRAY 9 WE 1GHT.S.t RECOVERY 9 FILTtri ING OF DATA 9 
C SMOOTHING, FIRST A;?JD SECOND DERIVATIVtS 
C IBM 1130 FORTRAN IV LANGUAGE 

DIY!ENSION H(30),DH(30),DDH(30),2(101) 
DIYENSION R(40),DR(401,DDR(40) 

1 FORMAT (4FlOaO) 
2 FOR?+lAT(A4,A4) 
3 FOS’!AT(lHls5XtA4vA4,30H RECOVERED TRAKSFEii FUNCT IONS/ 1 
4 FORMAT(~X,~HFI~XI~HTF~~~~X~~HTF~~~~X~~HTF~) 
5 FORMAT(/////~XIA~~A~,~BH INPUT Or\; RAi‘JGE OF .Ir<TEREST/ 1 
6 FORMAT(19X,lHT,8X,SHZI(T) 1 
7 FCRMAT(lH1,5XsA4,A4,16H DESIRED OUTPUT/) 
@ FOR~AT~5X,lHTt7X,4HR~T~,11X,5HDH(T~rlOXt~HDDR~T~~ 
9 FOR?lAT(lHlt5X,A4,A4,15H ACTUAL OUTPUT/) 

10 FOR:qAT(lX,F7.3,3E15.7) 
11 FORYAT(16X,F7r3,Ei5a7) 

P=3r 14159 
C 
C READ PROBLEM PARAMETERS 
C 

12 IREAD(2,2) RUN,XNU;VI 
READ(2,l) XNpTC,TD 
READ(2tl) ?.A,RB,RC,FS 
READ(2tl) AAvAB,AC*AD 
READ(2rl) BA,BBrBCtBD 
N=XN 

C 
C COb’,PUTATION OF THE UNCOkSTRAIhtD ~QEIGHTS 
C THE FACTORS -FS AND FS**2 OF THE FIRST AILD SECOKD 
C DERIVATIVE WEIGHTS r-;ILL BE INTRODUCED LATER 

; CO~IPUTATIO~ OF THE CEkTER b!tIGHTS 
C 

HO=2 r+TC+TD 
HT=TC+TD 
DDtiO=8.*(TD+*2+(RT+TC)-P**2*(RT**3+TC*+~3)/6.) 

C 
C 
C 

COMPUTAT ION OF THE REiLlAI N I NG 'n'k I GHTS 

DO 13 I=l,N 
x=1 
H~I)=SIk(HO*X*PI/(X*P) 
H(I)=H(I )*COS(TD*X*P)/(l.-4,*TD**2*X**2) 
DH(I)=RT*COS(~.*KT*X*P~+TC*COS~~.*TC*X*P~ 
D~~I~=DH~I~-i-l~I~~~lr-l2.“TD*~2~X~~~2~ 
DH(I)=DH(I)/(X~(lr-4.~TD*~2~X**2)~ 
DDH( I) =-2r*DH(I)*(l .-l2.*TD+*2*X++~2)+24.*TD**2*x*H(I1 
DDH~I)=DDI’(I)-2.*P*TC**2*SIN12r*TC*P*X) 
DDHtI)=DDH(I)-2e*P*RT**2*SINt2e*KT*P*X) 

13 DDH(I1=DDH(I)/(X*~i.-4r+TDw+2+X++2)) 

COYPUTATION OF CONSTRAINED .Sn'~iOOTHING PitIGHTS 
DERIVATIVE WEIGHTS ARE NOT CONSTKAIXED 
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SA=O 
DO 14 I=l,N 

14 SA=SA+H(I) 
FN=2*N+l 
SA=l r-(H0+2r*SA 1 
SA=SA/FN 
DO 15 I=l#N 

15 H(I)=HII1+SA 
HO=HO+SA 

C 
C RECOVERY OF ALL TRANSFER FUYCTIONS 
c 

WRITE(3,3) RUN,XNUM 
WRITE(3,4) 
ZA=lOO.*TC-1. 
ZB=ZA+6. 
ZC=Za+100o*TD 
ZD=ZC+6r 
DO 26 K=1,57 
TFl=Oe 
TF2=0, 
TF3=0# 
X=K 
IF(X-ZA) 16917917 

16 Y=K-1 
Y=r 0 l*Y 
GO TO 24 

17 IF(X-ZB) 18,19t19 
18 Y=Y+r005 

GO TO 24 
19 IF(X-ZC) 20,21,21 
20 Y=Y+rOl 

GO TO 24 
21 IF(X-ZD) 22923923 
22 Y=Y+.005 

GO TO 24 
23 Y=Y+oOl 
24 CONT INUE 

DO 25 I=l,N 
x=1 
X=2r*X*P*Y 
TFl=TF1+2r*H( IJ*COS(X) 
TF2=TF2+2r*DH(I )+SIIQ(Xl 

25 TF3=TF3+2,*DDH(I1*COS(X) 
TFl=HO+TFl 
TFZ=-FS*TF2/(2.*P) 
TF3=FS**2*(DDHO+TF3)/(4.*P**2) 
Yl=Y*FS 

26 WRITE(3,lO) Y19TFltTF2rTF3 
c 
C GENERATION OF SAVPLE INPUT DATA 
C 

K A = N + 1 
L;=2+N+40 
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27 
C 
C 
C 

28 
C 
C 
C 

29 
C 
C 
C 

30 

DO 27 I=l,M 
T = I - M A 
CA=COS(2r*P*RA*Tl 
S= SINt2r*P*RB*T) 
CC=COS(2.*P*RC*T) 
Z ( I) =AA*CA+AB*S+AC*CC+AD 

WRITE INPUT ON THE RANGE OF INTEREST 

WRITE(3951 RUNvXNUM 
WRITE(3,6) 
DO 28 I=1940 
T=I-1 
Y=T/FS 
J=I+20 
WRITE(3,ll) Y,Z(J) 

COMPUTATION OF DESIRED OUTPUTS 

WRITE(3,7) RUNsXNUM 
WRITE(3,8) 
DO 29 I=1940 
T=I-1 
CA=COS(2.*P*RA*T) 
S=SIN(2r*P*RB*T) 
CC=COS(2.*P*RC*T) 
R ( I) =BA*CA+BB*S+BC*CC+BD 
DDR( I) =-4r* ( P*FS )**2* (BA++RA**2*CA+BB*RB**2*S+BC*RC**2*CC 1 
CA=SIN(Zr*P*RA*T) 
S= CO.S(2,*P*RB*T) 
CC=SIN(2.*P*RC*T) 
DR(I) =-2.*P*FS*(BA*RA*CA-BB*RB*S+BC*RC*CC) 
Y=T/FS 
WRITE(3,lO) Y,R(I)tDR(I)~DDR(I) 

COMPUTATION OF THE ACTUAL OUTPUT 

WRITE(3r9) RUN,XNlJM 
WRITEt3tB) 
DO 31 K=1*40 
M B = K - 1 
MC-N+1 
SA=O. 
SB=O. 
sc=o, 
T=;vlB 
T=T/FS 
DO 30 I=l,N 
KA=MC-I 
KB=I+?lB 
KC=?lC+I+i~lB 
.SA=SA+H(KA)*Z(KBI+H(I)*Z(KC) 
SB=SS-DH(KA)*Z(KB)+DH(I)*Z(KC) 
SC=SC+DDH(KA)*Z(KB)+DDH(I)*ZtKC) 
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KD=XC+;rlB 
SA=HO*Z(KD)+SA 

k THE FACTORS -FS AND FS**2 ARE INTRODUCED HERE 
C 

SB=- FS*SB 
SC=FS**2*(DDHO*Z(KD)+SC) 

31 WRITE(3910) ThA,SBtSC 
GO TO 12 

32 CALL EXIT 
END 
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I II I, 11, I I, 11, I,,, I I 111 I ,111.. 11.111.-...-...--. ..m.-..L---- -.-.---..-.- .-...-. . - ..,, . ,.. __.__- 

RUN 1.20 RECOVERED TRANSFER FUNCTIONS 

F TFl TF2 TF3 
O#OOO OelGOOOCOE 01 0.0000000E 00 -0.1311312E-02 
OIlOO Ob9979708E 00 011064420E 00 -odo945aaE-01 
01200 069951461E 00 0.2027441E 00 -0.3935141E-01 
0.330 Oe9968977E 00 012944890E 00 -0.8744310E-01 
01400 0.1002811E 01 0.3948321E 03 -0.1586992E 00 
00500 Co1005624E 01 0.5038771E 00 -0.2532428E 00 
0.600 Oe1003225E 01 0.607045lE 00 -0i3641147E 00 
0.700 009928568E 00 016978028E 00 -0.4871102E 00 
oa750 019926648E 00 0.7428995E 00 -0.5559792E 00 
oaaOO Oe9962421E 00 L)r7916221E 00 -0.6327757E .OO 
oea50 0.1002821E 01 0.8453967E 00 -0.7189744E 00 
06900 001Cl09538E 01 0.9027563E 00 -0.8136282E 00 
0.950 Or1011476E 01 019585889E 00 -0.912091aE 00 
1.000 0.1002304E 01 0.1004446E 01 -0.1005558E 01 
1.100 Oo9256323E 00 0.1025274E 01 -0*1127162E 01 
le200 017502907E 00 0.9021662E 00 -0*1081105E 01 
1.300 005007748E 00 3.6448855E 00 -0.8382299E 00 
1.400 0.2500291E 00 0.3447629E 00 -014841259E 00 
la500 0*7292437E-01 C.1126013E 00 -0.1697427E 00 
lr600 =-0,3242715E-02 0,1952202E-02 -0.2021546E-02 
1.650 -0o1137795E-01 -O.l382274E-01 0.2441104E-01 
1.700 -0*8413781E-02 -@.1354452E-01 0,2445817E-01 
1r750 -0o1139287E-02 -0,5759337E-02 O.l072304E-01 
1.800 005260366E-02 0,2660113E-02 -0.5231769E-02 
1.850 Oo7969893E-32 C.7606103E-C2 -0,1545016E-01 
1.900 006575732E-02 C .7890945E-02 -O.l675595E-01 
2aOOO -0m2177529E-02 -0.3734135E,-C4 -004U22046E-03 
2.100 -005887906E-02 -0.5253134E-02 O.l261440E-01 
2r200 -0*5841164E-03 -O.l658775E-02 0.4961693E-02 
2.300 Oe4631496E-02 0.3213084E-02 -0.8373012E-02 
26400 012607105E-02 0.2442686E-02 -0.7743576E-02 
2.500 -0*2762178E-02 -O.l478645E-02 0.37P40POE-02 
2a600 -00363136CE-32 -C,24’30295E-02 U.f!551128E-02 
2a700 01643374.SE-G3 O.l206043E-23 C.706@655E-03 
2.800 Oo3587548E-02 0.2025167E-02 -0.7317515E-02 
2r900 0*1261193E-02 G.7712017E-03 -3.421088aE-02 
3.000 -0e2625765E-02 -b.l304567E-G2 0.46tiU845E-02 
3alOO -002543651E-02 -C.l199737E-02 3.6161725E-02 
3r200 O.l093053E-02 3.5435387E-03 -9.1195917E-02 
3r300 0*2954239E-02 0.1225777E-92 -0.6406264E-02 
3*400 0.5538661E-03 0.9670234E-34 -0.2188357E-02 
3a500 -0*2492955E-02 -0.9674295E-03 0.4918593E-02 
3a600 -0oli372954E-02 -0.4999767E-03 3.4641884E-02 
3r700 Oe1361831E-02 C,5857333E-03 -0.2248612E-02 
3.8'30 0*2536092E-02 0.6647356E-03 -0.5593535E-02 
3e900 007613562E-64 -0.2048472E-03 -0.74160RBE-C3 
4r000 -0e2406083E-02 -0.6356356E-03 U.5042111E-02 
4.100 -0o1394519E-02 -0,9081311E-04 3.3403406E-02 
4r2C)O 0,1572296E-02 0.4840:5GE-03 -0.3103943E-02 
4.300 0*2227681E-02 0.2544713E-03 -0.4999321E-02 
4e400 -0o3086174E-03 -Ga30632i6E-03 0.3360198E-03 
40500 -0e2359755E-02 -0.3104730E-03 0.5;54315E-02 
4.603 -O.l006163E-02 G.l595017E-03 0.234841OE-02 
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4e700 C.l772230E-32 0.3071723E-03 -0.3751266E-02 
4e800 0,19Y411aE-02 -0,5821355E-04 -004346328E-02 
4.900 -0a6548489E-C3 -0,28418&6E-03 o.l43587aE-02 
5rCOO -3.2343314E-C2 -C.l845173E-37 0.5127026E-32 

RUti lr23 IdPUT 011 tiAiJGE OF INTEREST 

T 21(T) 
d.JrjO C.2303La':E 01 
3.130 0.2141391E 01 
012Gij 0.1809336E 01 
Oe3OC Ce1675391E 01 
0.400 0.1734338E 01 
0.500 0.1309020E 01 
0.600 C,9680893E-01 
oc700 -0.1221256E 01 
o.aoo -0.1695813E 01 
0.900 -3.1225329E 01 
19000 -015877891E 03 
lrlO0 -0.3593391E 00 
1.200 -0.2317749E 00 
lr300 013a4'3333E 00 
1.400 0113435CBE 01 
lb530 o*la09Q17E 01 
1.600 Or1331661E 01 
1.700 0.4959050E 03 
1rijOO 0.2199592E 00 
1*900 0.6369729E 00 
2*000 0.1048940E 01 
2*100 0.9681456E 00 
2r200 0.7791751E 00 
2r300 0,11(19043E 01 
2r4UO o.la07641E 01 
2r5LO 0,20300i)6E Cl 
2.600 0.1169645E 01 
2.700 -0,6648854E-01 
2#aoo -0.8388498E 00 
2.900 -0.9339736E 00 
3.000 -0.9510520E 00 
3.100 -0.1265121E 01 
3.200 -011398078E 01 
3.300 -0.6797079E 00 
3*400 017135751E 00 
3r500 oda38997E 01 
3a600 0.1961560E 01 
3.700 011559595E 01 
3.800 0.1386260E 01 
3.900 0.1542770E 01 
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RUN 1.20 DESIRED OUTPUT 

T R(T) DR(T) DDR(T) 
0.000 0.150000OE 01 0.5654862E 01 -0e9869587E 01 
0.100 0019869a2E 01 013803755E 01 -0.2652090E 02 
0.200 0.2213843E 01 0.561149lE 00 -0.3691872E 02 
0.300 0.2079900E 01 -0.3250332E 01 -0.3752652E 02 
0.400 001579532E 01 -0.6592364E 01 -0.2768897E 02 
0.500 0.8090205E 00 -0.8519679E 01 -0.9881665E 01 
0.600 -0,5770258E-01 -0.8465039E 01 0.1100223E 02 
0.700 -0.816750CE 00 -0.6412636E 01 0.2911167E 02 
0.800 -0.1291302E 31 -0.2906222E 01 0.3939568E 02 
0.900 -0.1380933k 01 0.1110859E 01 0.3911847E 02 
1.000 -0.1087789E 01 0.4574855E 01 0.2866559E 02 
.l.lOO -005138531E 00 0.6614497E 01 0.1139459E 02 
1.200 0.1727297E 00 Or6801981E 01 -0.7420417E 01 
1.300 0.7885156E 00 0.5265874E 01 -0.2222074E 02 
1.400 0.1189006E 01 Or2532792E 01 -002886447E 02 
1.500 0.1309017E 01 -0.1822216E 00 -0.258704OE 02 
1.600 0.1177144E 01 -0.226990aE 01 -0.1462174E 02 
1.700 0.9004082E 00 -0.3013099E 01 0.1905620E 00 
1.800 006244733E 00 -0.2275657E 01 0.1390524E 02 
1.900 0.4824740E 00 -014355370E 00 0.2158624E 02 
2.000 0.5489405E 00 0.1747413E 01 0.205428aE 02 
2.100 0.8136265E 00 0.3386321E 01 0.1099.689E 02 
2.200 0.1183676E 01 0.3763598E 01 -0.3976525E 01 
2.300 0.1513559E 01 0.2575110E Cl -0.1941627E 02 
2.400 0.1653344E 01 Oi4225793E-01 -0.3004919E 02 
2.500 001500006E Oi -0.3141522E 01 -0.3197752E 02 
2.600 001035324E 01 -C.6017803E 01 -0.2394987E 02 
2.700 003380115E 00 -0.7658254E 01 -0.7814574E 01 
2.800 -004343325E 00 -0.7456580E 01 0.1199203E 02 
2.900 -0.lOaa467E 01 -0.5328023E 01 002976937E 02 
3.000 -0.1451052E 01 -0.1747550E 01 0.4028182E 02 
3.100 -0.1419645E 01 0.2377005E 01 0.4035951E 02 
3.200 -0.9935802E 00 0.5968716E Oi 0.2987515E 02 
3.300 -0.2751891E 00 0.8096265E 01 0.1179374E 02 
3.400 0.5590838E 00 0.8245612E 01 -0.8721251E 01 
3.500 0.1308997E 01 0.6465511E 01 -002586990E 02 
3.600 0.1807033E 01 0.3343007E 01 -0.349641OE 02 
3.700 O.i964092E 01 -0.1825450E 00 -0.3382345E 02 
3.800 0.17907aOE 01 -0.3108737E 01 -0.2339037E C2 
3.900 0.1388281E 01 -0.4672874E 01 -0.7379217E 01 

143 



HUN 1.20 ACTUAL OUTPUT 

T R(T) DR(T) DDRtT) 
0.000 0.15.04535E 01. 0.5672180E 01 -001003143E 
0.100 0.1997006E 01 0.3810961E 01 -0.2674775E 
0.200 0.2227905E Cl 0.5542731E 00 -0.3717136E 
0.300 0.2093550E Cl -0o32722aOE 01 -0.3776334E 
0.400 0.158t1283E 01 -0.6526684E 01 -0.2786724E 
0.500 0.8108793E 00 -0.8560511E 01 -0.9959752E 
0.600 -0.6214910E-01 -0.85C4871E 01 001104908E 
0.730 -0.8261282E 00 -0.6444131E 01 0.2927188E 
0.800 -001304341E 01 -0.2923855E 01 0.3962049E 
0.900 -0.1395387E 01 0.1109594E 01 003934507E 
1.000 -0.1100108E 01 Ob45ki8856E 01 0.288439aE 
1.103 -0.520.1376E CC 0.6639421E 01 001149700E 
1.200 0.1736555E 00 0.6831545E 01 -007405311E 
1.300 007944491E 00 0.5293857E 01 -0.2229047E 
1.400 0.1196451E 01 0.2654761E 01 -0.2899620E 
1.500 0.1315645E 01 -0.1680404E 00 -3.2602011E 
1.600 0.1182057E 01 -0.2262730E 01 -0.1494237E 
1.700 0.9026076E 00 -003010334E 01 0.1226907E 
1.800 0.623374aE: 00 -0.2274032E. 01 0.1388026E 
1.900 0.478247aE 00 -0.4324276E 00 0.2157488E 
2.000 0.5444044E 00 0.1752765E 01 0.2051726E 
2.100 0.8125589E 00 0.3392249E 01 0.1093810E 
2.200 O.lla7912E 01 0.3766631E 01 -0.4081605E 
2.300 0.1521807E 01 O..2571003E 01 -0.1957196E 
2.400 0.1652799E 01 0*2825790E-01 -003023a03E 
2.500 0.15ii8456E 01 -0.3165aa3E 01 -0.3215459E 
2.600 0.1041303E 01 -0.6050140E 01 -0.2405959E 
2.700 0.3396478E 00 -0.7693564E 01 -0.7819777E 
2.800 -0r4391971E 00 -0.7488450E 01 0.1209409E 
2.900 -0.1100232E 01 -C.534900aE 01 0.2995409E 
3.000 -C.l466836E 01 -C.l752902E 01 0.4351224E 
3.100 -001434570E 01 0.238a952E 01 0.4059167E 
3.200 -0.1303779E 01 0.5995729E 01 003005731E 
3.300 -0.2794016E 00 0.8132917E 01 0.1187637E 
3.400 0.5605205E 00 0.8284772E Cl -C.8762754E 
3.500 Om1315625E 01 Cr6530C52E 01 -0.2601960E 
3.600 0.1817954E 01 0.3367375E 01 -0.3517496E 
3.700 0.1976637E Cl -0.1711107E 00 -0.3404369E 
3.800 0.1800806E Cl -0.31C9664E 01 -0.2358241E 
3.900 Oo1392695E 01 -0.4682742E 01 -0.7520319E 

02 
02 
02 
02 
02 
01 
02 
02 
02 
02 
02 
02 
01 
02 
02 
02 
02 
00 
02 
02 
02 
02 
01 
02 
02- 
02 
02 
01 
02 
02 
02 
02 
02 
02 
01 
02 
02 
02 
32 
01 
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RUN 2.33 RECOVERED TRANSFER FUNCTIONS 

F TFl TF2 TF3 
0 0000 0.1000030E 31 O.GOL)OOOOE CO -0.5835911E-02 
0.100 0.9990799E GO 0.1001930E 00 -0.8069360E-02 
0*200 0.9993164E 00 0.1997105E 00 -0*3547989E-01 
003OC) 001~01067E 01 C.3001236E 00 -309505551E-01 
004i)o 0.10030a9E 01 004003138E 00 -0.1611912E 00 
Ob5OO 0.9988623E 00 0.4994860E 00 -0.2439548E 00 
0.600 .O.l000642E 01 0.60U0585E 00 -0.362857aE 00 
C.700 0.1000775E 01 0.7006694E 00 -004943077E 00 
0.800 00998Y035E oc! 0.7992988E GO -0.6339328E 00 
0.900 0.999355aE 00 0.8996904E 00 -0.a095680E' 00 
1.000 O.li)01316E 01 001031210E 31 -0.lU06855E i)l 
1.100 0.9990952E 00 0.1099378E 01 -0.1205643E 01 
1.200 0.9991569E 30 0.1198866E 01 -001435493E 01 
1.300 0.1001651E 01 0.1301818E 01 -0.1698287E 01 
1.400 0.9997751E 30 001400028E 01 -001959239E 01 
1.500 0.9981467E 00 0.1497367E 01 -0.2240645E 01 
1.600 001001773E 01 0.160238lE 01 -0.2568333E 01 
1.700 0010010~~4E 01 0017ola49E 01 -0.2895519E 01 
1.750 009981315E 00 0.1747196E 01 -0.3054255E 01 
1.800 0.9954056E 130 0.1793940E 01 -0.3222829E 01 
ira50 0.9980397E 30 0.1846379E 01 -003411917E 01 
1.900 0.1002675E Gl 0.1904661E 01 -0.3620667E 01 
1.950 0.1006047E 01 0.196127aE 01 -0.38304alE 01 
2.000 0.1000527E 31 0.~000a79E Cl -ti.4036828E 01 
2.100 0.9296782E 30 0.195289CE 01 -d.4095702E 01 
2.200 0.7532773E 00 0.1657316E 01 -0.3643926E 01 
2.300 0.5003579E 00 0.1150323E 01 -0.2652270E 01 
2.400 3.2464820E 03 0.5920952E 03 -0.1418133E 01 
2.500 0.697655aE-01 0.1745989E 00 -0.4318729E 00 
2.600 01aa34037fi-04 -0,4770605E-03 -0.4970335E-a2 
2.650 -0.5385111E-02 -O.l465639E-01 0,3295904E-01 
2.700 -0.252822aE-02 -0.6543208E-02 O.l71403RE-01 
2.750 O.l466907E-02 0.4777730E-02 -0.7799526E-02 
2.800 0.2877506E-02 0.8649288E-02 -001751051E-01 
2.850 O.l536750E-02 0.4309431E-02 -0,9930184E-02 
2.900 -0.664990aE-03 -0.2629067E-02 0,3551889E-02 
3.000 -0,1271256E-02 -0,3980459E-02 0.7884209E-02 
3.100 0*1174a13E-02 0.4522064E-02 -0,6962965E-02 
3.200 O.l751021E-03 0*1374801E-03 -0,lti50755E-02 
3.300 -0.9239686E-03 -0*3733852E-02 0.5517542E-02 
3r400 0.433650aE-03 0.2293624E-02 -002429389E-02 
3.500 0.4551198E-03 0,1702539E-02 -0.2622343E-02 
3.600 -0.5630087E-03 -0.3119310E-02 0.3316056E-02 
3.700 -0.3001862E-04 0.5234254E-03 3.2529160E-04 
3.800 0044aa020E-33 0.2477033E-02 -5,2605461E-32 
3.900 -0,2276487E-03 -0,2106855E-02 0,1393238E-02 
4bOOO -0.2248208E-03 -0,8951134E-03. 0.1168418E-02 
4.100 0.2968816E-03 0,2569953E-32 -O.l730209E-32 
4.200 O.l809746E-04 -0.8623488E-03 005417549E-04 
4.300 -0,2370779E-03 -0,1864251E-02 O.l318255E-02 
4.400 O.l030652E-03 0,2077714E-02 -0,6394788E-03 
4.500 O.l345563E-03 0.4006935E-03 -0,6329474E-03 
4.600 -O.l337616E-03 -0.2291661E-02 007678554E-03 
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4.700 -0.5112099E-04 O.l153040E-02 O.l630979E-C3 
4.800 O.l197832E-03 O.l465714E-02 -0.5972868E-03 
4.900 0.9760027E-05 -3.2141209E-02 -0.3583842E-04 
5roco -O.l094264E-33 -3.1822910E-06 0.4454670E-03 

RUN 2.30 INPUT OK RANGE OF INTEREST 

T ZI(T) 
0.000 0.1500ti21E 01 
0*100 C.7375208E 00 
0.200 obia30090E 01 
0.330 -0.2998620E 00 
0.400 -C,2424638E 01 
Ob5cJO 0.25S0011E 01 
0.600 0.1997600E 01 
0.730 Or3226885E 01 
o.aoo 0.1096962E 01 
C)'.930 -0.1164579E 01 
1.030 Cr35JOijCdE Cl 
l.lcli? 0.2639645E 01 
1.203 003448110E 01 
1.300 008757551E 00 
104GO -O,.laO6630E Cl 
1.500 0.2499990E 01 
1.600 0.1379579E 01 
1.703 0.2051303E Gl 
1.803 -0.5210227E 33 
1.900 -d.3066717E 31 
2bOOO 0.1499978E 01 
2.100 0.7375435E 00 
2.200 0,1330"61E 01 
2.300 -0.2997712E 00 
2.430 -0.2424694E 01 
2.500 2.2499964E 01 
2.600 0.1997619E 01 
2.7(;0 0.3226355E 01 
2.320 0.1097854E Cl 
2b900 -0.1164631E 01 
3.000 003499957E 01 
3.100 0.2639671E 31 
3.203 C03448087E 01 
3 b 3" 3 " Or8758545E 30 
3.400 -0.1805576E 31 
3.533 Gb2499953E 01 
3*6i)O C.13796CYE 31 
3*731:! 0.23512YlE 01 
3091io -015209245E 03 
3.9'30 -0.3866766E 01 
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RUN 2.33 DESIRED OUTPUT 

T R(T) DR(T) DDR(T) 
0.030 0.2300030E Cl 0.2513272E 02 -0.9869587E 31 
0.100 0.3853163E 01 C.6795659E 01 -003097555E 03 
i).200 002984591E 01 -0r2217934E 02 -3.1936235E 03 
0.300 3.4122205E 00 -0.2287444E 32 C.1798363E 03 
r).400 -0.5930976E 00 Ob4778507E 31 0.2973196E 03 
5.500 0.9999907E 03 0.2199113E 02 O.l663130E-02 
3.630 0.2593093E 01 0.477875aE 01 -0.2973186E 03 
il.700 0.1587798E 01 -0.2287429E 02 -0.1798390E 03 
0.800 -0.9345724E 00 -0.2217950E 02 0.1936208E 03 
0.900 -001853174E 01 016795397E 01 0.3097566E. 03 
1.300 -C.2122949E-04 0.2513271E 02 0.9872940E 01 
1.100 0.1951048E 01 008737512E 01 -0.2909814E 03 
1.200 0.1366572E 01 -0.1848603E 02 -0.1776569E 03 
lb300 -C,7633362E 00 -001779143E 02 0.191436OE 03 
lb400 -0.1211142E 01 0.1375390E 02 0.3034205E 03 
1.500 0.9999641E 00 002827431E 02 0,5073595E-02 
1.600 C).3211115E 01 001075457E 02 -003034173E 03 
1.703 0.2763381E 01 -0.1779092E 02 -001914441E 03 
1080C 0.6334746E 00 -0.184864aE 02 0.1776488E 03 
1.900 0*&892945E-01 0.8736775E 01 0.2909845E 03 
2.000 0.1999957E 01 0.2513273E 02 -0.9862882E 01 
2.100 0.3853157E 01 0.6796182E 01 -0.3097535E 03 
202i)o 0.298462aE 31 -0.2217901E 02 -0.1936290E 03 
2.300 0.4122592E 03 -0.2287474E 02 0.179830aE 03 
204C)O -005931057E 00 004778004E 01 0.2973217E 03 
2.500 0.9999535E 03 0.2199113E .02 0*8317557E-02 
2.600 0.2593085E 01 0.4779262E 01 -0.2973166E 03 
2.700 0.1587837E 01 -0.228739aE 02 -3.1798445E 03 
2.800 -009845349E 00 -0.2217983E 02 i).1936153E 03 
2.900 -0.1853186E 01 0.6794873E 01 0.3097586E 03 
3bOOO -0,6375927E-04 0.2513269E 02 0.9b79655E 01 
3.100 0.1951033E 01 0.8738004E 01 -0.29C9793E 03 
3.200 0.1366603E 01 -0.1848573E 02 -0.1776623E 03 
3.300 -0.7633061E 00 -001779173E 02 0.1914306E 03 
3.400 -0.1211160E 01 0.1075339E 02 0.3u34226t; 03 
3.500 0.9999163E 00 0.2827430E 02 001183093E-01 
3.600 0.3211097E 01 001075519E 02 -003034151E 03 
3.700 0.2763411E 01 -001779059E 02 -d.l914494E 03 
3.800 0.6335058E 00 -0.1848678E 02 i).1776434E 03 
3.900 0,4891466E-01 0.8736282E 01 0.2309e66E 03 
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i3U.K 2.35 ACTUAL OUTPUT 

T R(T) DR(T) DD;I(T) 
0.000 001998525E 01 0.2514377E C2 -0.9792138E 01 
0.100 0.3853364E 21 0.6805032E 01 -0.3103277E 03 
01200 0.2984187E 01 -0.2219441E 02 -0.1939563E 03 
0.303 00410a270E 00 -0.2287275E 02 001a0i)a44E 03 
3r400 -0.5941836E 00 0.4780036E Cl 0.297619aE 03 
0.500 0.9996534E 00 0.2200541E 02 -001595349E 00 
0.600 0.2594722E 01 0.4790205E 01 -002981915E 03 
0.700 0.1588983E 01 -0.2288864E 02 -0bla05052E 03 
0.800 -0.9843770E 00 -012217853E 02 0.1935356E 03 
O.?OO -obla52a24E 01 0.6794853E 01 0.3097560E 03 
1.000 0.7791440E-03 G.2514376E 02 0.9473095E 01 
1~0100 0.1953407E 01 C.a744890E 01 -0.2920075E 03 
1.200 0.1368009E 01 -0.1850490E 02 -0.1783759E 03 
1.300 -0.7633923E 00 -001779494E 02 0.1914036E 03 
1.400 -0.1211522E 01 0.1074929E 02 0.3035731E 03 
lb500 0.999626aE 00 0.2828213E 02 -0.1561212E 00 
1.600 0.3212040E 01 Ob1375998E 02 -0.3041426E 03 
1.700 0.2763229E 01 -001781050E 02 -0.1918297E 03 
1.800 0.6318294E .OO -0.1848930E 02 001779497E 03 
1.900 0.4711614E-01 0.8734235E ‘01 0.2914379E 03 
2.000 0.1998482E 01 0.2514379E 02 -0.97.85417E 01 
2.100 0.3853352E 01 0.6805556E 01 -0.31032.56E 03 
2.200 002984224E 01 -0.2219408E 02 -0.19396i8E 03 
2.300 0.4108657E 00 -0.2287305E 02 001800790E 03 
2.400 -0.5941886E 00 0.4779534E 01 0.297621aE 03 
2.500 0.9996162E 00 0.2200541E 02 -3.1528632E CO 
2.600 0.2594714E 01 Or4790708E 01 -0.2981894E 03 
2.700 0.1589022E 01 -002288834E 02 -0.1805107E 03 
2.800 -0.9843394E 00 -0.2217886E 02 0.19353C;lE 03 
2.900 -0.1852835E 01 0.6794329E 01 0.3097580E 03 
3.000 0.7366263E-03 0.2514375E 02 Ob9479817E 01 
3.100 Oo1953392E 01 0.8745383E 01 -0.2920054E 03 
3.200 0.1368040E 01 -0.185046OE 02 -0.1783813E 03 
3.300 -0.7633623E 00 -0.1779526E 02 0.1913982E 03 
3.400 -0.1211540E 01 Oo1074878E 02 0.3035752E 03 
3.500 0.9995790E 00 0.2828213E 02 -0.1493541E 00 
3.600 0.3212022E 01 0.1076049E 32 -303041405E 03 
3.700 0.2763259E 01 -0.178101aE 02 -00191a351E 03 
3.800 0.6318605E 00 -0.1848960E 02 001779443E 03 
3.900 0.4710128E-01 0.8733744E 01 Or2914403E 03 
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. 3 SAMPL;E EXXRAMANDRESULTS FORTHEMARTIN-GRAHAM IRTERPOLATING 

FILTERS 

The program of the preceding section yields a program for inter- 

polation when suitably modified. The necessary changes made to obtain 

the program in this section include: 

1. Provision has been made for the special cases given in (6.24). 

However, the weight subscript values which satisfy rnd@ = +1/2'rd 

are computed externally and read into the program. This is 

done because of errors introduced by truncation in the computer 

which cause m-@L1/2Td to be non-zero when it should be zero. 

This is essentially a programming problem, and it could be 

handled by choosing a small E > 0 and using the special for- 

mulas when Irn - 0 + 1/2'rd 1 < E. The value of E chosen 

will depend on the particular computer being used. Of course, 

we cculd avoid this problem by using Filter 3 of Chapter IV. 

As noted there, the performance of this filter is essentially 

the same as the Martin-Graham filter and no special evaluation 

is necessary except when m - Q, = 0 (this includes Q = 0). 

2. Statements for computing the weights ho, yi, y:, hm, yi, 

and y2 when (6.24) holds are included. 
m We chose to compute 

these in every run whether needed or not, and they are 

designated HO, DHO, DDHO, HM, DHM, and DDHM in the program. 

3. The loop for computing the weights for interpolation uses 

exactly the same weight expressions as the loop in the first 

program. In this case, the loop's upper index is 2N+l 
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instead of N because the symmetry of the weights is lost in 

interpolation. The shift of @ units is provided by subtracting 

@ from m(TX from X in the program). This is what allows use 

of'the same weight expressions. Note that taking (9 = 0 

(TX = 0) gives the weights for filtering without interpolation, 

and hence this loop can be used for computing .both ordinary 

filtering weights and weights for filtering and interpolation. 

The loop also contains statements to handle the use of the 

special weight expressions. If (6.24) is not satisfied for 

any subscript values m, then NA and NR must be read in as 

values which will make (N+NA-I+l) and(N+NR-I+l) non-zero for 

all values of I. I has maximum value 2N+l, and hence any 

integer greater than N+l will suffice for NA and NR in this 

case. When (6.24) holds for certain subscript values, then 

NA is to be the negative value for which (6.24) holds and J!B 

the positive value for which (6.24) holds. This is necessary 

to determine the correct sign for the first derivative weight 

DRM in each case. In Run 5.30, NA = -12 and NR = 13. 

4. The transfer functions for interpolation are all complex 

functions and the recovery of these functions has been 

omitted. 

5. Printing of the input has been omitted. 

6. The same loop for computing the desired output has been used 

with the argument being shifted by Q. 

7. The loop for computing the actual output was modified to 

allow for the unsymmetric nature of the weights used in 

interpolation. 
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The desired output and actual output is listed for five runs. 

The parameter values used for each run are given in Tables 7.1 and 

7.2. In each run, the input component with frequency f 3 is to be 

removed by the filters. The 0 values used are .E!5 and -5, so that the values 

interpolated for are one-quarter and one-half the length of the sampling 

interval to the right of the center input value. That is, letting the 

output of the filter without interpolation be 

N 

rj = c h g. 
n=-N n J+n' 

and the output with interpolation be 

N 
7 = 

j c Kg 
n=-N 

n j+n' 

then ';: 
ii 

is @fs units to the right of r.. 
J 

To interpolate for values @f units to the left of rj, the weight 
S 

relations (6.22) and (6.23) may be used to eliminate recomputation of 

the weights. This can be accomplished in the sample program by using 

the following loop for computing the actual output. 

DO 30 I=l,NN 

J=I+K-1 

IF(m) 40,41,40 

40 11 = NN-I+1 

SAl = SAl + H(Il)*Z(J) 

SBl = SBl - DH(Il)G(J) 

SC1 = SC1 -I- DDH(Il)+Z(J) 

41 SA = SA + H(I)&(J) 
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Si = SB + DH(I)*Z(J) 

30 SC = SC + DDH(I)*Z(J) 

SBl = -FS+SBl 

SB = -FS&B 

SC1 = SCl*FS**2 

SC = SC*FS+*2 

Provisions for initializing and printing SAl, SBl, and SC1 must also 

be made. The IF statement is included to eliminate duplicate out- 

puts when using the loop for filtering without interpolation (@ = 0). 
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SPlMPLE PROGfiAi”, FILTEiiING ‘/!ITH INTERPOLATIUN 
S’+OOTH I NC 9 i I?ST A”!I) SECOND DEAIVAT IVES 

DI?~‘IEKSION H(61) rDH(61)*DDH(61) rZ(lOl) 
DI!~E>iSION R/40) tDH(40 1 tDDRi(40) 

1 FGR!@AT (4F13.3) 
2 FORMAT (A4rA4) 
3 FORxAT ( 315 1 
7 FORKAT(lH1,5X,A4tA4rIbH DESIRED OUTPUT/) 
8 FCRMAT(5X,lHT,7Xt4HR(T)~llX~5HDR(T),1OX,6HDDR(T)) 
9 FORMAT(lH1,5XvA4,A4,15H ACTUAL OUTPUT/) 

10 F0R?~JAT(lX,F7.3,3E15.71 
P=3r 14159 

READ PROBLE’/I PARArvlETERS 

12 READ(2,2) 9UNrXNUM 
SEAD(2rl) XN,TC,TDITX 
READ(291) RAIRB,RC,FS 
IREAD(2tl) AAgA”,ACtAD 
READ(~,~) aAtak51ac9aD 

NA AND NB ARE SUBSCRIPTS OF THOSE WEIGHTS FOR KHICh 
SPECIAL EVALUATION IS NECESSARY 

READ(Zt3) ,\A,NB 
N=XN 

COMPUTATION OF THE UNCONSTRAINED MEIGHTS 
THE FACTORS -FS AND FS**2 OF THE FIRST AND SECOND 
DERIVATIVE WEIGHTS >JILL BE INTRODUCED LATER 

RT=TC+TD 
HO=2 r+TC+TD 
DHO=O. 
DDHO=8.*TD+*2*(RT+TC)-4.~~P**2/3.*(RT**3+TC**3) 
HM=TD/2.*COS 

THE MINUS 
REMOVED A 

DHM=- (P*TD*( 

P*TC/TD) 

SIGN IS KECtSSARY IN DHM BECAUSE WE HAVE 
FACTOR OF -FS FR3iJ EACH DERIVATIVE WEIGHT 

T D+2.*TC)*SIN(P*TC/TD)+3.*TD+*2*COS(P+TC/TD)I/2a 
DDHM=(7.*TD~*3-2.~P~*2*(TC*TD~(TC+TD)+TD~*3/3.))*COS(~*TC/TD) 
DDHM=DDHM+3r*P*TD**2*~TD+2.*TC)*SIN~P*TC/TD) 
NN=2*N+l 
DO 13 I=l,NN 
X=1-N-l 
X=x-TX 
IF(x) 51,50,51 

50 H(I)=HO 
DH( I )=DHO 
DDH( I )=DDHO 
GO TO 13 

51 IF(N+NA-I+11 53952953 
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52 H~I)=HM 
DH ( I 1 =-DHI’; 
DDH( I )=DDHM 
GO TO 13 

53 IF(N+NB-I+11 55954955 
54 li( I) =HM 

DH ( I 1 =DHM 
DDH-( I 1 =D3YM 
GO TO 13 

55 H(I)=SIN(HO*X*P)/(X*PI 
H(I)=kf(I)*COS(TD*X*P)/Il.-4a*TD**2*X**2) 
DH(I)=RT*COS(2.*RT*X+PI+TC*COS(2~*TC*X+~P) 
DH~I~=DH~Il-H~II~~1~-l2~~~TD~*2*X~~~2~ 
DH(I)=DH(I)/(X*(1.-4.*TD~~~2~X*~2)) 
DDH( I) =-2.*3H(I)*(l ,-l2.+~TD**2*X*+21+24,*TD**2*X*H( I) 
DDH( I )=DDH( I )-2r*P*TC**2*SIi1(2,+~TC*P*X) 
DDH( I )=DDH( I )-2~*P*RT*+:~2*SIl\jI2.~~I<T~~P+X) 
DDH(I)=D~~-lI~//X*(1,-4.+TD-rc*2~X~”c2)) 

13 CONTINUE 

GENERATION OF SAk’PLE IhPUT DATA 

;dA=N+l 
+i=2*N+40 
DO 27 I=l,?i 
T= I+lA 
CA=COS(2.*P*RA*T) 
s= SIN(2r*P*RS*T) 
CC=COs(2.*P*RC*T) 

27 Z ( I) =AA*CA+A3*S+AC*CC+AD 

COi~lPUTATIGh OF DESIkED WTPUTS 

idRITE(3,7) RU:\itXNU,y 
WRITEI3,B) 
DO 29 I=1940 
T=I-1 
T=T+TX 
CA=Ci)S (2 .*P*RA*T 1 
S=SIN(Z.*P*RB*T) 
CC=COS(2.*P*RC*T) 
R ( I) =aA*cA+aa*s+ac+cc+kD 
DDRfI) =-4b+(P~FS)~~2~(aAxRA~~2j~CA+ha~l~h~*2~~S+~Cj~RC~~2*C~) 
CA=SIh (2 r*P*RA+T 1 
s= COS(2.*P*RB*T) 
CC=SIA (2 .+P*RC*T 1 
D%(I) =-2 .*P*FS* (BA*RA*CA-d~*RS*S+t:,C+.+C~CC 1 
Y=T/FS 

29 >J’?ITE(3tlO) YII~(I),DR(I),~~H(II 

CO1:PUTATIW,l OF THE ACTJAL OUTPUT 
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w 
-_-_ 

DO 31 K=1,40 
MB=K-1 
SA=O. 
SB=O l 

sc=o. 

T=Mti 
T= tT+TX) /FS 
DO 30 I=l#EVN 
J=I+K-1 
SA=SA+H(I)*Z(J) 
SB=SB+DH(I)*Z(J) 

30 SC=SC+DDH( I)+Z( J) 

THE FACTORS -FS AND FS*+Z ARE INTROOUCED HERE 

SB=- FS*SB 
SC=SC*FS**Z 

31 WRITE(3,lO) T,SAeSB,SC 
PAUSE 
Go TO 12 

32 CALL EXIT 
END 
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RUN 1620 DESIRED OUTPUT 

T R(T) DR(T) UDRtT) 
0.025 0.1637818E 01 G.5351961E 01 -0.1434482E 02 
0.125 0.2373327E 01 0.3097759E 01 -0ti2988599E 02 
0.225 0.2216199E 01 -0.3775347E 00 -0.3806872E 02 
Oa325 Oe1987057E Cl -0e4170801E 01 -0a3600096E 02 
Oe425 001406460E 01 -0.7237290E 01 -0.2382530E 02 
3.525 Oo5934738E 00 -0.8702560E 01 -0a4723590E 01 
0.625 -0.2653625E 00 -0.8126870E 01 C.1601407E 02 
Ca725 -0e9675943E 00 -0.564C479E 01 Ca3257205E 02 
Oat325 -0e1351528E Cl -0.1907884E 01 004035715E 02 
0.925 -C.l3410C3E 01 0.2368331E 01 0.3737358E 02 
1.025 -0a9648516E CO C.5244037E 01 Cr2480251E 02 
I.125 -0r3454269E 00 0.683965dE 01 0.6639569E 01 
1.225 0.3400074E CO 0.6562417E 01 -0.1169485E 02 
1.325 Oa9129402E 30 0.4677525E 01 -0.2475618E 02 
la425 0.1245775E 01 0.1908088E 01 -0.29009ti6E 02 
1.525 0.1296586E 01 -C,8033547E 00 -0.2373833E 02 
1.625 Oa1116132E 01 -0.2596151E 01 -0.1124212E 02 
1.725 Oa8255349E 00 -0.2961104E Cl 0.3948057E 01 
1.825 0.5722126E.00 -0.1894210E 01 br1654C82E 02 
lr925 014784087E 00 0.1128211E'OC 012218744E 02 
2rC25 C.5988859E 00 Or2241276E Cl Oe1887761E 02 
2a125 0.9013744E 00 0.3619314E 01 0.75901'24E 01 
2.225 0.1276106E Cl C.3613879E 01 -0.8036871E 31 
26325 011571517E 31 O.?347774E 01 -3r2271295E 02 
2.425 001644850E 01 -C,7276661E 00 -0.3144828E 02 
2e525 0.1411572E 01 -0.3928616E 01 -0a3088420E 02 
2.625 0.8777371E 00 -C,6574944E 01 -0.2353925E 32 
2.725 Oa1446102E 00 -0.7793754E 01 -0.2993331E 01 
2.825 -0a6164962E 00 -0.7095955E 01 0.1685274E 02 
2.925 -0.1211989E 01 -0.4539264E 01 3.3324809ti 02 
3.025 -0.1482024E 01 -0.7258547E 00 Oe4134038E 02 
3.125 -0.1347767E Cl 0.3366154E 01 0.38661b4E 02 
3a225 -0.8354293E 00 C.6666752E 01 0.2589256E 02 
3.325 -0,6962841E-01 0.8327211E 31 0.6663772E 01 
3.425 0.7619902E 00 0.7966618E 01 -0.1353896E 02 
3a525 0.1462237E 01 i).5778i)70E 01 -G.2903459E 02 
3.625 0.1679593E 01 0.2458684E 01 -0.3565577E 02 
3.725 Oe1949135E 01 -ColC06309E 01 -3.3198193E 02 
3.825 011706126E 01 -0.3648266E 01 -0.1971893t 02 
3.925 011269598E 01 -G,4803969E 01 -0.311283GE 01 
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j!$ , 
RUN lr20 ACTUAL ( 

T R(T) 
Oa025 Oa1645196E 01 
Oa125 Oa2085801E 01 
01225 Om2232048E 01 
Oa325 OeZC)02062E 01 
Oa425 Oa1416376E 01 
Oe525 015965244E 00 
01625 -0a2684384E 00 
01725 -0a9752920E 00 
01825 -0e1362462E 01 
Ob925 -0e1353011E 01 
19025 -0a9743336E 00 
lr125 -0a3488280E 00 
la225 Oa3436755E 00 
le325 019214365E 00 
la425 011255661E 01 
la525 Oe1305589E 01 
lr625 Oa1123397E 01 
lb725 Oe8303442E .OO 
ir825 Oa5736964E 00 
la925 014769812E 00 
2a025 Oa5972460E 00 
2n125 Oa9030666E 00 
2r225 011282765E 01 
2r325 Om1581786E 01 
2a425 011655958E 01 
2a525 Oa1421372E 01 
2a625 Ob8848663E 00 
2.725 Oa1473961E 00 
2e825 -0a6199315E 00 
2e925 -011221819E 01 
3a025 -0e1495326E 01 
3r125 -0a1359797E 01 
3a225 -0a8425124E 00 
3e325 -0*7065820E-01, 
3a425 017665408E 00 
3r525 Oa1471727E 01 
3.625 061893066E 01 
3r725 Oa1963911E 01 
3r825 Oa1718232E 01 
3r925 Oe1276141E 01 

3UTPUT 

DR(T) DDR(T) 
015365969E 01 -0a1444303E 02 
Oa3100372E 01 -0e3002462E 02 

-0a3900173E 00 -0a3825466E 02 
-0a4198776E 01 -0a3623316E 02 
-0a7276670E 01 -0a2404929E 02 
-0a8745769E 01 -0a4843942E 01 
-0e8165518E 01 Oa1606258E 02 
-0e5667804E 01 0~3277412E 02 
-0m1919801E 01 Oa4064327E.02 

Oa2073037E 01 Oe3768262E 02 
Oa5263395E 01 Oa2510072E 02 
016868403E 01 016856093E 01 
Oa6593228E 01 -0a1156772E 02 
Oa4703687E 01 -0a2480119E 02 
Oe1925944E 01 -0e2920605E 02 

-0a7938837E 00 -0a2399836E 02 
-0e2592850E 01 -0a1147678E 02 
-0e2960987E 01 Oa3771034E 01 
-0a1894297E 01 01164i314E 02 

Oe1149186E 00 Oa2210921E 02 
Oe2246207E 01 Om1886403E 02 
Oa3624881E 01 Oe7628645E 01 
Oe3615464E 01 -0e7Y78300E 01 
012040599E 01 -0a2276006E 02 

-0e7459885E 00 -0e3157423E 02 
-0a3957067E 01 -0a3102409E 02 
-0a6609727E 01 -0a2062175E 02 
-0a7829313E 01 -0e2992994E 01 
-0.7125638E 01 0.1692924E 02 
-0e4556328E 01 01334048tiE 02 
-0.7254911E 00 Ob4159112E 02 

013384594E 01 Oa3898044E 02 
Oa6699155E 01 Oe2618887E 02 
Ob8366367E 01 Oe6832387E 01 
0.8005024E 01 -0a1354440E 02 
Oe5808911E 01 -0e2918478E 02 
Oe2477922E 01 -0e3589650E 02 

-0a1000987E 01 -0a3227905E 02 
-0e3655303E 01 -0~2004334E 02 
-0e4818810E 01 -0*3403159E 01 
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RUN 2r30 DESIRED OUTPUT 

T R(T) DR(T) DDR(T) 
01025 012514950E 01 062365615E 02 -0*1074349E 03 
Ob125 013923879E 01 -0hi202200E oi -0a3249451E 03 
Oa225 Or237i3444E 01 -0a2594291E 02 -011051014E 03 
Oa325 -0*9553063E-01 -061745135E 02 0.2503517E 03 
01425 -013845928E 00 061171776E 02 Oa2532060E 03 
01525 011539565E 01 Oa2077077E 02 -069681983fi 02 
Oa625 012617318E 01 -0a2902285E 01 -013120498E 03 
Oa725 Oa9686020E 00 -062629146E 02 -0aY118839E 02 
Ob825 -011470662E 01 -0*1641430E 02 002639228E 03 
Ob925 -0*1590414E 01 011403904E 32 062651079E'o3 
1~025 Oa6210957E 00 0624i4919E 02 -0.8775341E 02 
la125 Oa2076119E 01 Oa1202526E 01 -0.3067084~ 03 
la225 018576506E 00 -012186224E 02 -0*9009484E 02 
-1r325 -0a1140519E 01 -0e1209428E 02 Oa2606635E 03 
lb425 -0a8515008E 00 0*1732711E 02 Ob2578161E 03 
le525 Oa1696458E 01 062703466E 02 -0e983653OE 02 
lr625 013382679E 01 Ob2902889E 01 -0a3196036E 03 
la725 012267513E 01 -062151360E 02 -0*1040111E 03 
lr825 0*2346264E'OO -011313154E 02 Ob2470904E 03 
ir925 013543106E 00 011550563E 02 0.2459161E 03 
2a025 Oa2614910E 01 Oa2365633E 02 -0a10.74285E 03 
2r125 013923831E 01 -0a1201650E 01 -0b32494'51E 03 
2a225 Oa2378488E 01 -662594273E 02 -0*10510780 03 
21325 -0*9550111E-01 -0a1745178E 02 Oa2503477E 03 
2r425 -0a3846126E 00 011171733E 02 Oa2532G99E 03 
2r525 Oa1539530E 01 0.2077093E 02 -0a9681349.E 32 
2r625 012617323E 01 -Ca2901757E 01 -Ga3120499E 03 
21725 019686465E 00 -0,2629131E 02 -0.9119481E 02 
2m825 -0a1470634E 01 -0a1641474E 02 Oa2639188t 03 
2r925 -0a1590438E 01 Or14G3859E 02 oa2651118E 03 
3a025 Ob6210549.E 00 Ob2414934E 02 -3*97747U2E 02 
3b125 0*2076117E 31 Ga1203044E 01 -iI*3ti67384E 03 
3a225 018576876E 00 -0r21862G9E 02 -0a9tilGlZuE 02 
3a325 -0*1140498E 01, -011239472E 02 0.2606596ti 03 
3r425 -0a8515309E 03 0.1782668E 02 0.2~782OlE i)3 
3a525 011696412E 01 Oa2703483E 02 -3aYd35886E 02 
3r625 Oa3382674E Cl 0*2933430E 01 -0,3196C36E i)S 
3r725 012267549E 01 -012151342E 02 -011U4C174E 03 
3a825 012346486E 00 -0r1313196E 02 012470865E 03 
3r925 063542845E 00 0.1550521E 02 0.2459201E 03 
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liUI\! 2.3ii ACTUAL OUTPUT 

T Ii(T) DII(T) DDK( T I 
06025 012614879E 01. 062366695E 02 -0.la757YlE 33 
Oe125 063925231E 01 -0e123767GE Cl -C.3255331E 03 
01225 062378706E.01 -0e2596372E 02 -0b10515blE 03 
Oe325 -0*9571261E-01 -0a1744320E C2 002505466k 03 
01425 -063845009E 00 011172585E 02 Oa2533687E 03 
0e525 Oe1540655E 01 C62077860E 02 -0.9725229E 02 
01625 062620083E 01 -0.2913330E 01 -0.3129780E 03 
06725 Oe9703921E 00 -0a2631990E 02 ->*9160369E 02 
Om825 -0a1469351E 01 -0e1641507E 02 Or2637756E.03 
06925 -0ai58901oE oi Oe1403777E 02 062649786E 33 
la025 Om6231883E 00 Oe2414815E 02 -0a8839926E 02 
i6125 6a2079479E 01 Oe1183964E 01 -3a3077504E 03 
la225 Ob8595701E 00 -0a2i89610E 02 -0.9051335E u2 
la325 -0a1139556E 01 -0e1209786E 02 Oa2606240E 03 
lb425 -0a8508899E 00 0617a2594E 02 ob2578949t 03 
16525 011697390E 01 Oe270366GE 02 -0.9b72269tz 02 
la625 Oa3384626E 01 Oe2889903E 01 -3.3203056E 03 
la725 Cm2267904E 01 -0a2153983E 02 -0al(J43709E 03 
lb825 0 r2340952E 00 -0e1312619E 02 Oa2473931E 03 
lb925 Oe3536089E 00 0.1551381E 02 Oa246287CjE 03 
26025 012614839E 31 Oa2366713E 02 -0.10757.27E 03 
2a125 Oe3925233E 01 -0a1237120E 01 -0.3255331E 03 
2a225 062378750E 01 -0a2596355E 02 -0.ld51645L 03 
2a325 -0a9568308E-01 -0a1744362E 02 0.250'5426E 03 
2a425 -0e3845207E 00 Oa1172542E 02 0.2533726E 03 
2a525 061540620E 01 Oa2077876E 02 -3*9724594E 02 
26625 012620088E 01 -0b2912802E 01 -0a31297HOE 03 
2.725 Oa9704366E 00 -0e2631974E 02 -0.9161012E 02 
2a825 -0el469323E 01 -0m1641552E 02 012637716E 03 
2b925 -0 ri589034E oi Oa1403732E 02 0.2649825E 33 
3r025 Oe6231474E 00 Oa241483OE 02 -0a8b39286E 02 
3m125 Oe2079477E 01 011184483E 01 -013077504E 03 
3e225 Oe859607lE 00 -0e2189595E 02 -0.9351971E 02 
3e325 -0.1139536E 01 -0a1209831E 02 0a26Ci6201E 03 
36425 -0e85092GlE 00 061782550E 02 Oa2578989E 03 
3r525 Oa1697344E 01 062703676E 02 -3r9871645E 02 
3a625 Oa3384621E 01 Oa2890443E 01 -0e3203055E c)3 
3e725 Oe2267940E 01 -0a2153966E 02 -0.1040773E 03 
3a825 0,2341173E 00 -0e1312661E 02 Oe2473892E 03 
36925 063535827E 00 oe155i339E 02 Oe2462909E 03 
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IRUb! 3r20 DESIRED OUTPUT 

T K(T) DK(T) DDR(T) 
06050 011766679E 01 Oe4938876E Cl -0.1866949E 02 
'3b153 Oa2141117E 01 Oa2313379E 01 -2e3278050E 02 
c6250 012194795E Cl -0a1336816E 01 -0a3b56261E 02 
Ob350 Oe1871746E 01 -0r5044983E 01 -0.3382819E 02 
Ob450 Oa1218520E 01 -0a777993CE 01 -0e1951801E 02 
Ob550 Oa3749803E 00 -0 68754963E 31 Oa5394089E 00 
Oe650 -0e4630277E 00 -0a7666565E 01 0.2075845E ti2 
a*750 -0a1098110E 01 -0a4788715E 31 Ob3547091E 02 
Obti50 -011386567E 01 -0e8941116E 00 Oa4362941E 02 
Ob950 -011277845E 01 062974423E ai 0.3501531E.02 
1.050 -0aS264314E 00 Oa5811985E 01 Oa235f!O21E 02 
li150 -0*1728700E GO 0.6944924E 31 061ti18384E 01 
la250 0.4999934E CO 01622OG47E 01 -2.1563247E 02 
lb350 Oa1021921E 01 0~4032777E 01 -0e2672656E 02 
16450 011284444E 01 01118743OE 01 -0.2854307E 02 
lb550 0.1269343E 01 -01136527bE 01 -LJr211433GE 02 
la650 Oa1048102E 01 -0a2830577E 01 -0a7490256E 01 
lb750 0.7531204E CC -0a2817o90E 01 ur75384G6E 01 
la850 Or5302667E 00 -0a1452336E Gl dr1873035E 02 
1.950 Oa4881806E 00 Oa6690398E '00 Oir2221362E 02 
2e350 0*66(36031E 00 Ga2687022E 31 361630003E 32 
2a150 Oa9938517E LO Oa3763516E 01 Oa3YObli3lE 01 
2,250 Oa1363534E 01 063363824E 01 -0e1198093E 02 
2a350 Oe1615299E 01 Or1.442648E 01 -0m2562756E 02 
2.450 0.1616731E 01 -0e15251dkiE 01 -0a3225165E 02 
2.550 Oa1303869E 31 -014680505E 01 -0r291639bE 02 
2a650 0.7073371E 30 -G:7340914E 01 -0a1666674E 02 
2e750 -0*5065416E-01 -0a7806685E 01 Oe1976008E 31 
2e850 -0.7881384E 00 +.6616079E 01 062149321E 02 
2r950 -0a1314759E 31 -013670347E 01 Oe3619575E 02 
3b050 -0m1487195E Cl Or3137219E CS 3r4170975E ci2 
3*15(! -0a125176OE Cl 0.4304714E Cl Oe363184YE 32 
3m250 -0a6611172E 00 017259699E Gl 362149681E c12 
3b350 Oa1400939E 63 Oe8428938E 01 Oe1471941E 01 
3b450 Oe9564504E 00 Or7571182E 01 -3a1805476E 02 
3a550 Oe1597300E 01 Or5018523E 01 -3a3163064E 02 
39650 36192S932E 31 0.1565717E 01 -Ca3568807E 02 
3b75C 0*191421YE ;rl -0.1777057E 01 -0.2959C67E 32 
3a850 Oa1609163E 01 -0.4092371E 01 -0.1577006E 02 
3a950 Om1148966E 31 -Ue4829101E 01 0.lOH3350E 01 
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RU? ;j 3.20 ACTUAL OUTPUT 

T R(T) DR(T) DDii( T I 
0bO50 0.1774376E 01 Or4950708E 01 -0*1873413E 02 
0.150 062153616E 01 Oe231302OE 01 -0a3287326E 02 
Oe250 Oa2210266E 01 -3a1354320E 01 -0a3875856E 02 
06350 061885964E 01 -0e5079988E 01 -0e3413317E 02 
Ob450 011227372E 01 -0e7825891E 01 -3*1981448E 02 
Ob550 063769i49E GO -3e680130OE 01 Ob3959359E 00 
Oa650 -0a4670542E 00 -0a7703970E 01 012OBG606E 02 
01750 -0a1106445E 01 -0e4811996E 01 Oe3563456E 02 
Oa850 -0a1397744E 01 -069009312E 00 Oe4383441E 02 
Ob950 -0hi289674E Oi ob29a4905E 01 0.3525874E 02 
16050 -0e8353605E 00 Oe5837741E 01 0.2086821E 02 
1.150 -0e1754956E 00 Oe6979118E 01 OeZU73010E 01 
la250 Oa5344458E 00. Oe6252705E 01 -0a1554569E 02 
lb350 061031031E 01 Oa4356003E 01 -0a2686711E 02 
lb450 0ei294705E oi Oa1199263E 01 -0a2382790E 02 
lb550 011278515E 01 -0a1362002E 01 -0*2143419k 02 
la650 Oa1055399E 01 -0m2832199E 01 -0e7724943E 01 
lb750 067578907E SO -0a2821063E 01 0.7334094E 01 
lb850 0653i7099E 20 -0.1456047E 01 Ob1854444E 02 
lb950 Oa4d67321E 00 066689462E 00 0.2213497E 02 
2e050 Oe6590886E 00 Oa2692149E 01 Oa1672224E 02 
2r150 069956566E 00 003770613E 01 G.4305763E 01 
2a250 061370227E 01 Oa3365614E 01 -0.1193893E 02 
2b350 061625346E Oi Oa1432769E 01 -0e2572307E 02 
2r450 Oe1627319E 01 -0a1548013E 01 -3a3243235E 02 
2e550 Oa1312506E 31 -0a4712630E 01 -U.2932142E 02 
2r650 Oa7135630E tJ0 -0e7077912E 31 -0b167584tiE 02 
2e750 -014e77054E-01 -007843221E 01 OelY18299E 01 
2a850 -0e7923162E 00 -0a6645688E 01 Oe2146376E 02 
2,950 -0e1324989E 01 -0e3684793E 01 Oa3626463E 02 
3b050 -0e1500422E 01 0.3196643E 00 '3.4193747E. 02 
3r150 -011263242E 01 Oe4330678E 01 013664565E 02 
3.250 -0a6673232E 30 Oa7298474E 01 0.2176670E 02 
3b350 Oe1400626E 00 Oa8470385E 01 0.1567866E 01 
3b450 019619329E OC Oa7607367E 01 -0a1812337E 02 
3r550 Oa1607544E 01 005045543E Oi -0*3179250E 02 
3r650 061943788E 01 Or1579341E 01 -0e3592174E 32 
3b750 011929044E 01 -0e1779031E 01 -0e2Y92190E 02 
3r850 011620995E 01 -0a4107951E 01 -0e1617132E 02 
3r950 Oa1155057E 01 -0a4851237E 01 0.7379718E 03 
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RUN 4.33 DESIRED OUTPUT 

T R(T) DRlT) DDRtT) 
3.050 Oe3163258E 01 0.1984135E 02 -0e1953862E 03' 
I)*150 0.3793120E 01 -0o9192650E 01 -0a3091631E 03 
Om250 Or1707112E 01 -0.2735415E 02 -0.6979695E 01 
01350 -0.4481194E 00 -0e1056570E 02 Oa2958880E 03 
0,450 -0a1914259E-01 0.1722981E 02 0.1840956E 03 
0.550 0.2019128E 01 0.1722997E 02 -011840929E 03 
0.650. 0.2448128E 01 -0.1056545E 02 -0.2958891E 03 
Ci.750 0.2929195E 00 -0.2735416E 02 0.6976321E 01 
0.850 -0.1793112E 01 -0.9192911E 01 0.3091621E 03 
0.950 -0a1163274E 01 0.1984118E 02 0.1953889E 03 
lrC50 3.1187863E 01 0.2082443E 02 r011758874E 03 
1.150 012311112E i)l -0.6339902E 01 -0.2915764E 03 
1.250 0.2929174E CO -3.2291128E 02 0.6974564E 01 
1.351) -0.1356097E 01 -0.4967538E 01 0.3ti484e4E 03 
lr450 -0.3320337E 00 C.2343547E 02 0.1871862E 03 
1.550 Oe2331974E 01 0.2343595E 02 -011871780E 03 
1.650 013356110E Cl -0.4966835E 01 -0.3348515E 03 
la750 0.1707140E Gl -0.2291127E 32 -0.6984689E 01 
1.850 -O.l109660E-01 -C.6340641E 01 3*2915733E 03 
1.950 0.8120834E 00 0.2082396E 02 0.1758955E 33 
2.050 013163224E 01 0.1984168E 02 -0alY53808E 03 
2.150 013793136E 01 -0.9192128E 01 -0.3391652E 33 
2a250 0.1707158E 01 -0.2735414E 02 -0.6Y86441E 01 
2.350 -3.4481015E OL7 -0.1056520E 02 0.2958859E 03 
2.450 -0.1917173E-01 0.1722950E G2 Oe1841009E 03 
2.550 0.2019098E 31 0.1723028E 02 -0.1840875E 03 
2.650 0.2448146E 01 -0.1056495E 02 -0.2958912E 03 
2,750 0,2929568E 30 -0.2735417E 02 0.6969575E 31 
2.850 -0.1793097E 01 -0.9193434E 01 0.30916G3E 03 
2.950 -0.1163308E 01 0.1984035E 02 3.1953944E 03 
3.050 0.1187828E 01 0.2082473E 02 -0.1758819E 03 
3.150 0.2011123E 01 -G,6339408E 01 -0.2915.7e5E 03 
3m253 Oe2929561E 00 -0e2291129E 02 0.6968016E 01 
3.350 -0.1356389E 01 -0.4968124E 01 0.3Ci48464E 03 
3.450 -013320733E .GO 0.2343516E 02 0.1871917E 03 
3.550 002331934E 01 Ci.2343627E 02 -0.1871725E 03 
3.650 0.3356118E 01 -0.4966319E 01 -0.3048535E 03 
3.750 Or1707179E 01 -0.2291125E 02 -0.6991364E 01 
3r850 -O.l108587E-01 -0.6341135E 01 b.2915713E 03 
3*950 Oa8120483E GO 0,2082366E 02 0.1759009E 03 
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RUI\; 4.30 ACTUAL OUTPUT 

T H(T) 
0.050 0.3163427E 01 
0.150 0.3794153E 01 
0.250 0.17C6817E 01 
0*350 -0.4479947E 00 
0.450 -O.l877488E-01 
0.550 0.202032OE 01 
0.650 0.2450356E 01 
0.750 0.2938679E 00 
0.&50 -0.1791831E 01 
G.950 -0.1161902E 01 
19050 0.1189780E 01 
1.150 0.2013714E 01 
1.250 0.2938597E 00 
1.350 -0.1355187E 01 
1.450 -0.3314098E 00 
1.550 0.2332868E 31 
1.650 0.3357515E 01 
1.750 0.1706830E Cl 
1.850 -O.l137338E-01 
1.950 0.8117026E 00 
2.050 0.3163394E 01 
2.150 0.3794168E 01 
2.250 0.1706863E 31 
2.350 -0.4479768E 03 
2.450 -O.l880399E-01 
2.550 0.202ij291E 01 
2.650 0.2450374E 01 
2.750 0.2939142E 00 
2.850 -0.1791785E 01 
2.950 -0.1161935E 01 
3.050 0.1189745E 01 
3.150 002013724E 01 
3.250 0.2938985E 03 
3.350 -0r1355179E OL 
3.450 -0.3314494E 00 
3.550 0.2332828E 01 
3.650 0.3357524E 01 
3.750 C.1706868E 01 
3.850 -001136279E-01 
3.950 0.8116673E 03 

DR(T) DDrl(T) 
0.1984857E 02 -0.1956055E 

-0.9212233E 01 d.3096701E 
-0.2737617E 02 -0.6916901E 
-0.105.5026E 02 0.2961674E 

0.1724259E 02 0.1842178E 
0.172288OE 02 -0.1845075E 

-0.1059710E 02 -0.2966246E 
-0.2739075E 02 0.6799791k 
-0.9193114E 01 .003092147E, 

0.1983878E 02 0.1953192E 
0.2080999E 02 -0017644GSE 

-0.6381557E 01 -0.2923832E 
-Co2295365E 02 0.6801010E 
-0.4968607E 01 0.3049777E 

0.2343695E 02 0.1872595E 
0.2342993E 02 -0.1875356E 

-0.4996419E 01 -0.3054297E 
-0.2293906E 02 -0.6919042E 
-0.6326196E 01 0.2YlY293E 

0.2084062E 02 0.1761607E 
0.1984890E 02 -0.19.56O.ClE 

-0.9211710E 31 -0.3096722E 
-0.2737616E 02 -0.6Y23659E 
-G.l055076E iI2 0.2961652E 

0.1724228E 02 0.1842232E 
0.1722911E 02 -0.1845021E 

-G.l059660E 02 -3.2Y66267E 
-0.2739076E 02 0.67Y3033ti 
-0.9193637E 01 0.3092126E 

0.1983845E 02 0.1953247ii 
0.2081029E 02 -0.1764349E 

-0.6381064E 01 -0.2923352E 
-0.2295367E 02 0.6794329ii 
-0.4969322E 01 u.3ti49757E 

C.2343664E 02 O.lB7265CjE 
0.2343024E 02 -0.1H753Olk 

-0.4995904E 01 -0.3054318E 
-0.2293905E 02 -3.6925717E 
-3rb326689E 01 0.2919273k 

C.2084033E 02 0.1761662E 

03 
03 
01 
03 
33 
G3 
23 
01 
03 
03 
0 3 
03 - 
01 
03 
03 
03 
03 
31 
03 
03 
03 
03 
01 
03 
03 
03 
03 
01 
03 
03 
03 
93 
0 1 
03 
03 
03 
03 
01 
33 
03 
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RUN 5.30 DESIRED OUTPUT 

T R(T) DKIT) DDR(T) 
0.050 0.1766679E 01 0.4038876E 01 -0.1866949E 02 
0.150 0.2141117E 01 0.2313379E 01 -G.327805GE 32 
0.250 0.2194795E 01 -0.1336616E 01 -0.3856261E 02 
0.350 0.1871746E 01 -0.5044983E 01 -0.33H2819E 02 
1)*450 0.1218520E ul -3.7779930E 01 -0.1951831E 02 
0.550 0.3749803E 00 +.6754983E 01 G.539408YE 00 
b.650 -0.4630277E GO -0.7666565E 01 0.2075845E ii2 
0.750 -0.109811OE 31 -0.4788715E 01 0.3547091E 02 
0.850 -0.1386567ti 01 -0.8941116E 00 0.4062941E Oz. 
0.950 -0.1277845E 01 0.2974423E 01 0.3501531E 02 
1.050 -0.0264314E 00 0.58119E5E 01 0.2058021E 02 
1.150 -C.l728700E 00 0.6944924E 01 0.1818384E 01 
1.250 0.4999934E 00 0.6220347E 01 -3.1563247E 02 
1.350 OolC21921E Cl 0.4032777E 01 -0.2672656E 02 
1.450 0.1284444E 01 0.1187430E 01 -0.2854307E 1)2 
1.550 0.1269343E 31 -0.1365278E 01 -0.211433GE 32 
1.650 O.ld48102E 01 -C.2Y30577E Cl -0.7490256E :,l 
1.750 0.7531204E Jo -0.281709GE Gl il.7538406E 01 
1.850 0.5302667E 00 -0.1452336E 01 0.1873035E 22 
1.950 0.4881806E 00 0.6690398E OC 0.2221362E U2 
2.352 0.6606331E 00 0.2687022E 01 3.1673i703E 32 
2.150 0.993Y517E 20 0.3763516E 01 0.3906191t 01 
2.253 0.1363534E 01 Gr3363824E 01 -G.llYb093E d2 
2.350 0.1615299E Sl 0.1442648E 01 -0.2562756E 32 
2.450 0.1616731E 01 -0.1525188E 01 -0.3225165E G2 
2.550 3.1303869E 91 -0.4680505E 01 -0.2916398E 02 
2.65L: 0.7~~73371E di) -0.704091&E 01 -3.1656674E 32 
2,753 -0. 5265416E-01 +.7BU6685E 01 3.1976008E 01 
2.iZz50 -0r7881384E 00 -0.6616L79E 01 0.2149321E 02 
2.950 -0.1314759E 01 -0.367C047E 01 G.3619575E 02 
3.053 -0.14ti7195E 01 G.3137219E 30 0.4170975E 02 
3.150 -0.1251763E 21 G.4324714E 01 0.3631849E 02 
3.250 -0.6611172E 30 C.7259699E 01 0.2149681E 02 
3.350 G.14004'39E 00 ti.a428938E 01 0.1471941E 01 
3.450 G.S5645G4E CO 0.7571182E 01 -3.1805476E 02 
3.55s 0.1597303E 01 0.5018523E 01 -(~.3163064E 02 
3.65c.1 O.l.j29902E 01 0.1565717E a21 -ti.3568807E 02 
3.750 3.1914219E 01 -G.l777;57E cil -0.29593675 U2 
3.850 0.1639163E 21 -;.4092371E Cl -C.l577006E 32 
3.950 0.114Y966E 01 -C,4?291ClE 51 t2 . 1 i:r '; 3 3 5 0 F cl 1 
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:iux 5.33 ACTUAL OUTPUT 

T R(T) DR(T) DDR(T) 
a.059 0.1762292E 01 0.4933204E @l -0.184G920E 32 
cj.15ii 0.2139639E 01 0.2320372E .o 1 -0.3255046E 02 
0.250 0.2196410E Cl -0.1324026E Gl -0.3844223E 02 
0.350 0.1974763E 01 -0.5029287E 01 -0.3381265E 02 
0.450 0.1221371E 01 -0.7757496E 01 -0.1957212E 02 
3.550 3.3778123E CO -0.8724501E 01 0.4111782E 00 
3.650 -0.4592694E 00 -0.7636938E 01 0.2052792E 02 
0.750 -0.13Y3578E 01 -0.4773226E 01 003516295E 32 
O.tlSG -0.1382604E 01 -0.8975653E 00 0.4ti3426GE 02 
0.950 -C.l275110E Cl 0.2959144E 01 0.3464286E 02 
1.05L: -0.8237377E co Ob5793915E 01 0.2052532E 02 
1.150 -3.1685263E CO 0.6925314E 01 0.161C723E 01 
1.25C C.5059884E GO 0.6195523E 01 -0.15645C4E C2 
1.350 C.1027705E 01 0.4005633E 0 1 -0.2673257E 02 
1.450 0.1288331E 01 G.1167402E 01 -0.2851969E 02 
1.550 0.1271353E 01 -0.1371376E Cl -0.2112144E 02 
1.650 0.104.906GE Cl -0.2827503E 01 -0.752939GE 31 
i.750 6.7526369E GO -C~.2&15910E L?l 0.74355E7E 01 
lbE5U 0.52755UlE i)C -3.1457683E Cl b.1264273E 32 
1.95C 0.4827671E GZI 0.6627893E 30 ,7.222253GE 02 
2.050 0.6544383E 00 0.2686435E 01 C.l6$132k?E 02 
2.150 0.9695827E 09 C.3767S41E Gl i;.435%523E 01 
2.253 Gm1362264E 01 il.3.365698E Oi -0.llH54b5E 02 
2.350 0.1616205E 01 0.1443381E 01 -0.2551871E 02 
2.450 0.1618903E 01 -0.1517107E 01 -0.3215389E 02 
2.550 0.1307665E 01 -0.4659297E 01 -0.2912905E 02 
2.650 0.713402OE 00 -C,7012595E 31 -0.1677362E 02 
2.750 -G.431?079E-31 -0.778413GE 01 0.171368GE 01 
2.850 -0.7815321E 00 -0.6636293E 31 0.21159B2E 02 
2.350 -3r1310492E 01 -0.3670G35E 31 0.3589899E 32 
3.350 -0.1484557E 31 0.3G82342E 00 0.4149155E 32 
3.150 -0.1249342E 01 0.4291059E 01 0.3615335E 32 
3.250 -3.6578129E 00 3.7232847E 01 G.2139175E 32 
3.350 0.1429601E 00 0.8391574E 01 0.1461235E 01 
3.450 0.9581022E 00 0.7536420E 31 -d.l794703E 02 
3.550 0.1598452E 01 0.4997765E 01 -G.3146130E 02 
3.650 0.1931647E 01 0.1558773E 01 -0.3556241E 02 
3.750 3.1916124E 01 -0.1778140E 01 -0.295631YE 02 
3.850 0.1609352E 01 -0.4091518E 01 -0.1580219E 02 
3.950 0.1146293E Gl -0.4822620E Gl G.i358495E 01 
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7-b SAMOA PROC;RAM AND RESULTS FOR INDEFINITE INTEGRATION WITH 

SMOOTHING 

The following program for indefinite integration with smoothing 

was run with the input given by (7.7) and parameter values as follow: 

a1 
= 1.5, a2 = 2.0, a 

3 
= 1.5, a4 = 0, fl = 0.7, f2 = 0.9, f 

3 
= 2.0, 

fs = 10, fc = 1.0, and Af = 0.6 (Af both the inner and outer roll-off 

length). In terms of the frequency ratio, the input frequencies are 

-07, .Og, and 0.2. Also ~c = 0.1, 7d = .06, and 7T = .16. 

N was taken to be 25, and hence 2N+l = 51 weights were used. The 

number of terms used in computing the sine integra.1 was 25--which is 

too many for small values of the argument. For large values of the 

argument, the firrt terms of the series may become large enough to 

cause loss of significance, and computation of the sine integral in 

this case should be approached with caution. 

A transfer function recovery is provided in this case. This may 

be compared with the designed transfer function of this filter in 

Section 6.0. 
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INDEFINITE INTEGRATION WITH SMOOTHING 

DI,qENSION TER~A~50~,TER~~B~50~tH~30~~~~1~1~ 
1 FORblAT (4FlOeO) 
2 FORMAT (15X,F7,3,E20r7) 
3 FOR%AT(lH1,37HINDEFINITE~ INTEGRATION WITH SMOOTHING/) 
4 FORMAT (20Xe23HF TRANSFER FUNCTION/ 1 
5 FORMAT(/////1%,32HDESIRED OUTPUT AND ACTUAL OUTPUT/) 
6 FORMAT (17XtlHT,BXtl4HDESIRED OUTPUT,6X,13HACTUAL OUTPUT/) 

P=3r 14159 

READ PROBLEM PARAMETERS 

READ(2tl) XM,XN,TCtTD 
READ(2el) RA,RB,RCtFS 
READ(2,l) AA,AB,AC 
READ(2,l) BAtBBtBC 
M=XM 
N=XN 
RT=TC+TD 

COMPUTATION OF SINE INTEGRAL 

TERMA(l)=lr 
TERMB(l)=lr 
DO 9 I=l,N 
x=1 
XA=2 r*X*P*TC 
XB=2 r*X*P*TD 
DO 7 K=l,M 
Y-K 
J=K+l 
Y=(2r*Y-l.)/(2r*Y*(2.*Y+l.~~*2~ 
TERMA =-XA**2*TERMA (K) *Y 

7 TERMB(J) =-XB**2+TERMB(K)*Y 
SA-0. 
SB=O. 
DO 8 J=ltM 
SA=SA+TERMA(J) 

8 SB=SB+TERMB t J 1 

COMPUTATION OF THE FILTER WEIGHTS 

A=2,*P*TD++(XB*SB=XA*SA) 
A=A+COS(2r*P*X*TD)/X=SIN(2~~P~X%TD)/(2r+P~TD*X~*2) 
A=A+(SIN(2.*P*X*RT)-SIN(2.~P~X~TC))/(2.~P~TCuX**2~ 

9 H(I)=A-TD*COS(2.*P*X*TC)/tTC*X) 

TRANSFER FUNCTION RECOVERY 

WRITEt3,3) 
WRITE(394) 
DO 11 K=1,51 
HX=O. 
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Y=K-1 
Y=.Ol*Y 
DO 10 I-ltN 
x=1 

10 HX=HX+2.*H(I)*SIN(2,*P*X*Y) 
HX=HX/t2r*P**2*TD*FS) 
Y=Y*FS, 

11 wRITE(3921 Y,HX 

GENERATION OF SA??PLE INPUT DATA 

ibl A = N + 1 
>zlB=2*N+40 
DO 12 I=l,MB 
T = I - ;>I A 
CA=COS(2.*P*RA*T) 
s= SIN(2r*P*RB*T) 
CC=COS (2 l *P*RC*T I 

12 Z ( I I =AA*CA+AB*S+AC*CC 

COMPUTATION OF DESIRED AND ACTUAL OUTPUTS 

WRITE(3,5) 
WRITE(3t61 
DO 14 K=1,40 
MA=K-1 
%IB=N+l 
SA=O. 
T =!vlA 
CA=SIN(2r*P*RA*T) 
S= CO.S(2r*P*RB*T) 
CC=SIN(2r*P*RC*T) 
W=(l~/(2ruP*FS))*1(3A*CA/RA)-(BB*s/R~)+(BC~CC/RC)) 
T=T/FS 
DO 13 I=ltN 
KA-MB-I 
K6= I +MA 
KC=MA+i”lB+ I 

13 SA’SA-H(KA)*Z(KB)+H(I)*ZtKC) 
SA=SA/(2r*P**2*TD*FSl 

14 hRITE(3,16) TpvL’9S.A 
15 PAUSE 
16 FORMAT (13X,F703t2E20r7) 

CALL EXIT 
E ?!, D 
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INDEFINITE INTEGRATION WITH SMOOTHING 

F TRANSFER FUNCTION 

ObOOO 
0.100 
01200 
0.300 
01400 
01500 
Oe600 
0.700 
01800 
0.900 
lb000 
1.100 
lb200 
1.300 
1.400 
la500 
1.600 
1.700 
lr800 
lb900 
2.000 
2blOO 
2r200 
2r300 
2r400 
2~500 
2.600 
20700 
20800 
2r900 
3b000 

3rlOO 
3b200 

3b300 

3b400 

3b500 

3b600 
3b700 

3r800 
3b900 

4booo 

4b 100 

4b200 

‘%b300 

4.400 
‘%b 500 
4b600 
4b700 

4b800 
4*900 
5 boo0 

0a0000000E 00 
-0a4835658E-01 
-0 l 8780948E-01 
-0 r1277766E 00 
-0a1789851E 00 
-0a2279376E 00 
-0a2476159E 00 
-0,2315462E 00 
-~a2007518E 00 
-0bl75745oE 00 
-0,1565062E 00 
-0,1339059E 00 
-0 b 1067456E 00 
A0b7933023E-01 
-oa5228427E-01 
-0a2565890E-01 
-0e5420293E-02 

oa2290246E-02 
006325266E-03 

-0a1412288E-02 
-0a2060364E-03 

Oa99698olE-03 
0 r8562479E-04 

-0,7656668E-03 
-0~3i’o7978E-o4 

ob6189613E-03 
O.l383451E-04 

-0b5182999E-03 
-ob1719720E-05 

ob4456929E-03 
-0b4721969E-05 
-0o3915387E-03 

oai’95662oE-05 
oe350199lE-03 

-ob925631lE-05 
-0e3181395E-03 

Oa9363038E-05 
ob2930673E-03 

-0e8i’37~31E-05 
-ob2734517E-03 

oai’676857E-05 
Oe2582632E-03 

-0e6377806E-05 
-Oa2468168E-03 

0*4938406E-05 
Oa2386498E-03 

-0e338248oE-05 
-oa2334196E-03 

oa1i’l7076E-05 
0b2308705E-03 
oe1579199E-07 
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DESIRED OUTPUT AhD ACTUAL OUTPUT 

T DESIRED OUTPUT ACTUAL OUTPUT 

ObOOO 
OalOO 
01200 
0*300 
om400 
0.500 
0.600 
01700 
0.800 
01900 
lrOO0 
lb100 
lb200 

lb300 

lb400 

lb500 

lb600 
16700 lb800 
1,900 
2rooo. 
2.100 
2.200 
20300 
2.400 
20500 
i?b600 

2b700 

2.800 
2b900 

3.000 
3.100 
30200 
3.300 
3b400 

3b500 

3b600 

3b700 
3r800 

-0 b3536779E 00 -0a3514901E 00 
-0b1534097E 00 -0al485978E Oii 

oa1121917E 00 0,1181381E 00 
0 r3746589E 00 0~3802788E 00 
0 r5604481E 00 0.5649213E Oi) 
0.6122803E 00 Oa6152744E 00 
0 r5068678E 00 Oa5080646E OJ 
0 l 2635254E 00 0 r2626033E 00 

-oe592727lE-01 -0.6217347E-01 
-0b3788076E 00 -0b3828688E 00 
-0.6104846E 00 -006146804E 00 
-0 r6913374E 00 -0a6950833E 00 
-0e5978873E 00 -0b6010847E 00 
-013531308E 00 -0e3556196E 00 
-0.2054097E-01 -0,2175848E-01 

013132720E 00 0.313924bE 00 
0 r5623014E 00 oa564855lE 00 
Oe6645101E 00 006683750E 00 
oe5981959E 00 Oa6026798E 00 
0 r3868218E 00 013914806E 00 
ob9117493E-01 Oa9553805E-01 

-0 r2086029E 00 -0m2054478E 00 
-0 b4357007E 00 -0 r4349084E 00 
-0a5374080E 00 -0a5396085E 00 
-0.4981004E 00 -0.5028978E 00 
-0 b3410508E 00 -0 b3473235E 00 
-0.1190831E 00 -0el256373E 00 

011026215E 00 0*9682514E-01 
0 l 2660714E 00 Oa2621591E 00 
0.3364188E 00 0,3356144E 00 
oe3097564E 00 0.3127672E 00 
0 l 2109084E 00 0.2172432E 00 
0*8255693E-01 Oe9059381E-01 

-0.3031365E-01 -ob2251394E-01 
-0 r9537795E-01 -0e8934363E-01 
-0.1024980E 02 -0*9927360E-01 
-0 r6495364E-01 -0,6530841E-01 
-001235776E-01 -0a1659110E-01 

0 r2197467E-01 Oe1457962E-01 
3b900 0&1462374E-01 Oo5923016E-02 
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APPENDIX A 

CONSTRAINTS 

In order to develop constraints on the weights % such that 
the recovered transfer function E has an exact fit at some specified 
frequency Fwe need to consider two eegarate cases.* The first is 

N 
when Ii is of the form H(r) = ho + 2 

c 
hncos 2mr, r = $- 

W 

n=l S 
=2nfb* 

N 

The second is when H(r) is of the form H(r) = 2i 
c 

hnsin 2xnr. 
n=l 

A.1 Constraints at one point -m 

N 
Case I. Suppose H(r) = Tie + 2 

1 
r;,cos 2mr, 

n=l 

then 
N 

RI(r) = -431 
c 

Ginsin 2mr. 
n=l 

We wish to impose the following constraints: 

E(F) = F(F), 

El (F) = F'(7), 

i.e., 
N 

ii0 + 2 
c 

iincos 2rmfi - F(F) = 0, 
11=1 

* This is a reprint of Appendix A of NASA ~~-136. The symbol r is 

used here to denote the frequency ratio f/f 
S’ 

Also, the symbol F 
is used here to denote a function of r. 
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N 
4x 

c 
ansin 2& + F'(7) = 0. 

n=l 

In order to minimiee the error between H and E under the above con- 
straints we define 

1 
5 N 

R= 
s 

[E(r) - H(r)12dr + CY[~Y~ 
c 

Gnsin 2nriP + F'(F)]. 

0 n=L 

Since 
N 

cO = F(T) - 2 
c 

Kncos 2mE, 

1 n=l 
2 N N 

R= 
s [F(F) + 2 

c 
gn(cos 2nnr - cos 2mT) - ho - 2 

c 
hncos 2n14~dr 

0 n=l n=l 

N 

+ a[41( 
c 

d&sin 2nnT + F'(F)]. 
n=l 

1 
B N N 

aR -= 2 s [f(P) + 2 c- hn(cos 2nnr - cos 2nfi) - h - 2 a% 0 c hncos 2mr] 0 
n=l n=l 

[cos 2zkr - cos 2xkF]dr + a[&rksin 2nkF]. 

; F(f)cos 2rrkl'+ hncos 2mT 2nkP + hO kk -- cos 70s 2rtkT - 2 

n=l 

=- a[flksin 2xk7? 
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N 

$ipQ + [ 
c 

r;,cos 2*rP - ~10s 2AE 

Let 6= (co-ho), then 

(s-q 

n=l 
h 

+ $cos 2flkT; = 

= 6 cos 2xky - XI[rtksin 2nkF]. 

- CX[nksin 2nk'E]. 

(A.1) 

Multiply (A.l) by (2 cos 2rtk7). Summing from 1 to N gives 

N N 

2 
c 

(i$j)cos 2fikT = 26 N 
c 

cos2 2xkY - b-9 
c 

srkcos 2nkF sin 2nkF, 

k=l k=l k=l 

adding (go-ho) to both sides gives 

N 

(ho-ho) + 2 (~-~&OS 25rkIr 
c 

k=l 

N N 

= 6+2 6 cm2 25rkF - ha 
c 

tikcos 2nkT sin 2nkF. 

k=l k=l 

Let 
N 

4 =ho+2 
c 

hncos 2JtnF - F(F). 

n=l 

Hence 
N 

\=( ho-Eo) + 2 2rtE, 

n=l 

so 
N N 

4 =4Q 1 lrncos 2finT sin 2nrE - 6 - 26 c cos2 2mT. 

n=l n=l 
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NOW multiply (A.l) by 2min 2&. Suming frcm 1 to N gives 

N N 

2 
c 

N 

k(+k)sin2M= 26 
c 

kcos 2xkr sin 2fiE - 4a 
c 

xk2sin22fiW. 
k=l k=l k=l 

Let 

N 

%= 
-4s 

c 
nhnsin 2mF - F'(r). 

n=l 
Hence 

N 

4 = 4% 
c 

n(q-hn)sin 2mE. 

n=l 
so 

N N 

4 = 4x 6 
c 

kcos 2& sin 2&- 8st2a 
c 

k2sin22xkF. 
k=l k=l 

Let Ql = 2fcos22~E, 
k=l 

N 

s 
= 4x 

c 
kcos 2arG sin 2nkI;, 

k=l 

Then 

4 = f4-p - (l+q 6 , 

and 

A2 = -Q3a + &2 6 . 

177 



Solving we find that 

*lQ3’a2% 
6 = Q$(l+e,,ad 

a _ 4&2’a2FL) 

Q$+\)Q3 l 

Therefore the constrained weights are 

%=% + 6 cos 2Yffi - Wrtksin 2scfi, k 11, 

where 6 and a are as defined in (A.2) and (A.3). 
N 

Case II. Suppose E(r) = 2i 
1 

i;,sin 2nnr, 

n=l 

then 
N 

Et(r) = 4r(i 
1 

nKncos 2mlr. 
n=l 

We wish to impose the following constraints 

E(F) I F(r), 

i?(F) = F'(F), 

i.e., 

N 

2 
c 

I;,sin 23rr5 - i F(F) = o 9 
n=l 

and 

(A.21 

(A. 3) 

N 

43-c 
c 

ni;,cos 2xnF - i F'(F) - o. 

n=l 

178 



In order to minimize the error between 
conditions we, define 

1 
2 

r 

N 
R= CEtO - H(r)12dr + a[kCniincos J 

0 L 
n=l 

Since 

F(f)- 2 NKsti2ycE i c n ii1 = n=2 
9 

2sin 2YrF 

1 
2 

s 

N 
R= [ sin 2nr [F(T) 2 . 

c 
Znsin 

0 sin 2YG = n=2 

-2 hnsin 2xnr] dr 
n=l 

H and E under the above 

2mlF F'(F) - --+ 

N 

2YmFl + 2 
c 

Ensin 27cnr 
n=2 

N 

+ al437 
c 

niincos 2xnr - 
n=l 

P 

s 

N N 
aR=2 [sin 2xr[ F(f;) _ 2 T-l 

a x o sin 2G i c 
ii sin 2xnF] + 2 

n=2 n z 
Ensin 2mr 

n=2 

F(F)] 
i 

N 
-2 

c 
hnsin 2anr][ -2sin 2m sin 2rtE 

+ 2sin 2rtkrldr + &tc~kcos 25rkF. 
n=l sin 2G 

Let aR 

ai;,=“‘k=2 

9 l l -9 N. 

2 

s 

N 
NOW sin2nr :F_(r)- 2 

o sin 2rrI; i c 
i$n 2nnFl[sin 2xkr - sin 2xr sin 2&r IdI- 

n=2 sin 26 

N 
FF E.. P i 

sin2JIkF+ sini3fkT 
sin2 276 c 

Ii sin 2nnT 
2sin22xF n=2 n 
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Also 
SC 

[En-hn]s5n 2stnr[sin 2&r - sin 2rcr sin 2nE lilr 
0 n=2 sin 2YE 

1 
5 

s 
[hlsin2 2nrI sin 23&F & = hl sin 27rkF T . 

0 sin 2nF sin 2ItF 

Hence 
N 

$ [2CEnsin 2firE - i sin 21k.F F(F)] 2 

n=2 sin 216 
+ $ r$$g + 2 ;E ;;y 

= - $kcos 2&i! 

Wkcos 21&. 

Let 6 = El-hi, then 

Multiplying (A.4) by 2sin 2nE and sumning f'rom 2 to N gives 

c’;k-q sin 2~cti = 26 

N 
k cos 271l@ sin 2xkF. 

k=2 

Adding 2(hl-hl) sin 211'i; to both sides yields 

N N N 

2 
c 

(s-hk)s3n 2rtE = 26 sin2 2nkF-, 
c 

kcos 2rtfi sin 2nkF. 

k=l sin 2nr k=2 

Let Al = 2fjlksin 2YrkF - F(i;). 
k=l 
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Since 

or 

N 

F(F) = 2 
c 5c sin 2&T, 

k=l 

Al=2$j$+n2RkY, 
k+ 

N N 

4 =ZCY c kcos 2fikT; sin 2nE - 2 6 c s$.n2 2fiky . 

k=2 k=l sin 2rrr; 

Multiplying (A.4) by 4rtkcos 2xE and summing from 2 to N gives 

N N N 

4x 
c 

$9%)kcos 2~cfi = 47~6 
c 

krsin &E cos &kY -4a! 
c 

f12k2cos2 2nE, 

k=l k=l sin 2nF k=2 

adding 4x(hl-hl)cos 2ar to both sides of the above equation gives 

N N 

42-c (pQ 
c 

kcos 2nfi = 41~6 
c 

kms 2nE sin 2nkT -b cos2 2nkF. 
k=l k=l sin 276 k=2 

Let 

k=l 

- F'(r). 

N 

Since F'(F) = 4rr *OS 2xk.T. 
c 

k=l 

N 

92 
= 4r 

c 
(%-S) kcos 2xfi. 

k=l 
Hence 

N N 

% 
= 4lrs 

c 
kcos 2~cckF sin 27d5 - 4ax2 

c 
k2cos2 2xfi. 

k=l sin 2G k=2 
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Let 

Ql = 

Q2 = 

Q3 = 

Q4 = 

Then 

4= 
and 

%= 

Solving for 6 

6 = 

a= 

N 

2 
c 

kcos 2xkF sin 23&F, 

k=l 

sin 2JrF 

N 
4lf 

2 
1 

k2cos2 2rtkF. 

k=l a(% - cos 27G sin 2x3 - 6 Qp 

a(Q4-h2 cos2 214 -I- 6 Q . 
3 

and IX we find that @I&Q4 2 -45r cos * 27d + A& -cos 235 sin 23153 

Q (Q 
3 2 

-cos 21-rr sin 23G) - Q&&-4s2 cos2 24 
(A.51 

447 - %Q2 
(A.6) Q3(&2 -cos 2nF sin 2xF) '9Q&Q494x2cos2 214) l 

Therefore the constrained WightS are 

i$ = \ + 6 sin 2nTk - cmk cos 25tk& k 2 2. 
sin 2~6 
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APPFNDMB 

DETERMINATION OF DIGITAL FILTER WEIGHTS FOR A FILTER WHOSE GAIN 

AND PHASE FUNCTIONS ARE GIVEN AT A FtiITE NUMBER OF POINTS 

The procedure discussed in Chapter III for obtaining the weights 

of a digital filter assumes that the transfer function is given for all 

values of the frequency f. In some applications, the values of H(f) = 

A(f)exp(ia(f) > are known at only a finite number of points. In particular, 

the known values are sometimes the values of A(f) and 0(f) at a finite 

number of points on r%fs/21 - In this case, the filter weights must 

be determined by other means. 

The method given here is a simple extension of harmonic analysis as 

presented in most advanced engineering mathematics and numerical analysis 

books to complex-valued functions. 

Let H(f) be a complex-valued function which is periodic with period 

f s, and suppose that the values of H(f) are known at M + 1 equally 

spaced points on [-fs/2, fs/2] , say 

fj = -fs/2 + j(fs/M) , j=O,1,2,. . .,M. 

We wish to approximate H(f) by a finite trigonometric sum of the form 

N2 
c hn exp(2nrrifj/fs) 

n=-N 
1 

(B-1) 

where the hn are to be chosen such that 
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N 

R = y [H(fj) - 2 
j=O n=- 

Nl 

hn exp(2nrrifj/fs) 1 2 

is a minimum. This, of course, is minimization in the least squares 

sense. A necessary condition for R minimum is 

g-& =o 

(B.2) 

(B.3) 

for each k, -Nl < kl N2. For each k 

aR 
ah,= 25l [ 

j=O 

aR Setting ahk = 0 gives Nl 

N2 
H(fj) - ,=zN hn exp(2nnifj/fs)l exp(2knifj/fs) 

1 

+ N2 + 1 equations 

N3 (B-4) 
'2 H(fj) exp(2krrifj/fs) - 
j=O 

g hn exp(2(n+k)nifj/fs) = 0 
n=-N 

1 

in Nl + N2 + 1 unknowns, the hn's. 

From (B.4) we ha.ve 

(B-5) 

y H(fJ) 
j=O * 

exp(2knifj/fs) - [hn '2' exp(2(n+k)nifj/fs)]= 0 

1 
j=O 

For each n, 
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'f exp(2(n+k)zifj/fs) = '2 exp(2(n+k)ni(-fs/2+j(fs/M,3/fs) 
j=O j=O 

= '$ exp(2(n+k)zi(j/M-$ ) 
j=O 

M- 
= f exp(2(n+k)jni/M) exp(-(n+k)Jci) 

j=O 

= (-lpk '2 exp(2(n+k)aji/M) 
j=O 

for n = -k, 

'2' exp(2(n+k)aij/M) = r$ 1 = M. 
j=O J- 

Suppose n f -k. Employing the identity 

n n+l 

6 

i 1-Z 
z 

-j.= 
=m 2 

y exp(2(n+k)Jrji/M) = '9 {exp(2(n+k)ni/M)}j 
J=o j=O 

l-.{exp(2(n+k)ni/M]M 
= 

1-exp(2(n+k)fii/M) 

_-- 
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1-exp(Z(n+k)fli) 
= 

1-exp(2(n+k)fii/M) 

1-cos 2(n+k)J( -sin 2(n+k)sr 
= 

l- exp(2(n+k)ni/M) 

=o 

if (n+k)/M is not an integer. This condition is always satisfied if 

M > n+k or synonymously if 

M > max 1 Nl + N2, 2Nl, 2N2} = max (2Nl, 2N2) (B.6) 

If condition (B.6) holds, then each of the equations (B.5) reduces to 

y H(fj) exp(2kfiifj/fs) -Mhmk = 0, 
j=O 

or h-k = l/M 'zl H(fj)exp(2krrifj/fs) 
j=O 

Hence, replacing k by -k, 

hk = l/M y 
J=o 

H(fj)exp(-2knif /f > 
3 s (B-7) 

Note that condition (B.6) requires that the number of intervals of 

equal length into which the period of H(f) is divided is greater than 

twice the larger of the integers Nl and N2, or synonymously, the number 

M + 1 of equally spaced points is greater than or equal to 

max (29, 2N2]. 
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The following discussion shows that the hn's which give the least 

squares minimization are those computed by the trapezoidal rule from 

the formula (3.37) for the Fourier coefficients of 'H(f). Equation (B.7) 

can be written as 

hk = (l/M) exp(-2tiifo/fs) + '2' II exp(-2krrifj/fs) 
j=l 1 

= (l/M) 
E 

H(-fs/2) exp(k%i) + ME' H(fj) exp(2krrifj/fs) 
I 

(B.8) 
j=l 

' = (l/M) exp(ksri) + y H(fj) exp(-2tiifj/fs) 
j=l 

+ (-$)H(fs/2) exp(-ksi) 
3 

The last equality of (B.8) is possible since H(-fs/2) = H(fs/2) 

and exp(tii) = exp(-hi). 

By applying the trapizoidal rule to (3.37), we have 

fs/2 
l/f S s 

.H(f) exp(-2krrif/fs) df I 

-fs/2 

+ 2 Mz1 ( / 
j=l 

H -fs 2 + A) exp((-2krri)(-fs/2-i-j(fs/M))/fs) 

+H(fs/2) exp~(-2M.)(fs/2)/fs) J> 
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~___ ._.^ - -- 

= (l/M)[($)H(-f,/2) exp(kti) + Mzl@fj) exp(-2hifjifs) 
j=i 

+ ($)H(f/) exd-hi.11 (B-9) 

which is identical to (B.8). Hence the coefficients for the least 

squares minimization can be computed by applying the trapezoidal rule to 

(3.37). 

Writing H(f) in polar form, we have 

H(f) = A(f) exp(i@(f)) 

where A(f) and Q(f) are real. These are called the gain and phase 

functions, respectively, of the filter. In practice, the gain A(f) 

and phase Q(f) are specified on [0,fs/2] . Now a necessary and sufficient 

condition for the weights of a filter to be real is that 

H(-f) = H*(f) 

where H*(f) denotes the complex conjugate of H(f). If A(f) is extended 

such that it is an even function on [-fs/2,fs/2 1, then 

H(-f) = A(-f) exp(i@(-f)) = A(f) exp(-i@(f)) = H*(f) 

and the corresponding weights are real. The formula for the weights 

can be written in a more useful form in this case. from (3.371, 

we have 
‘J2 

hn = l/fs 
s 

H(f) exp(-2nrrif/fs) df 

-fs/2 
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0 
:,I2 

= l/f 
S s 

H(f) exp(-2nstif/fs)df+l/fs 

-fs/2 
J H(f) exp(-2nrrif/fs)df 

0 

-fs/2 
= -l/f 

S s 

fs/2 

H(f) exp(-2nnif/fs)df + l/f s s 
H(f) exp(-2nnif/fs)df 

0 0 

fs/2 = l/f S s fs/2 

H(-f) exp(2mif/fs)df + l/f 
S s 

H(f) exp(-2nJrif/fs)df 

0 0 

fs/2 fs/2 
= l/f s s H*(f) exp(2nnif/fs)df + l/fs 

s 
H(f) exp(-2nnif/fs)df 

0 0 

fs/2 = l/fs s [ H*(f) exp(-2nnif/fs) + H(f) exp(-2nnif/fs)] df 

0 

$,I2 

= 2/f J ~e[H(f) exp(-2nnif/fs)]df, where Re [ H(f) exp(-2nflif/fs)] 
S 

0 

denotes the real part of H(f) exp(-2nxif/fs). 

Hence, 

fs/2 

hn = 2/f 
S s 

Re[ A(f) exp(iQ(f)) exp(-2nGf/fs)] df 

0 

f /2 
= 2/f rs Re[A(f) exp(i@(f)-2nrrif/fs)] df 
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fs/2 
= 2/f S s 

A(f) cos[2naf/f -Q(f) ]df 
S 

0 

(B.lO) 

Now the hn's which give the least squares minimization may be 

computed by applying the trapezoidal rule to (B.lO) 

Subdivide the closed interval [0,fs/2] into N ,> M subintervals of 

equal length, and let f. = j(fs/N), j = 0,1,2,. . . ,N. Then f 
J j+l - fj = 

f,/N, j = O,l, . . . ,N-1. By applying the trapezoidal rule to (B.lO), 

fs/2 s A(f) cos [2nflf/fs-Q(f)] df 

0 

= fs/2N (A(O) cosc~(O) + 2 '2' A(fj) 
j=i 

cos [2nnfj/fs-Q(fj) I+ 

A(fs/2) ~0s [nn-Q(fs/2) 1 I 

So that 

fs/2 
hn = 2/f 

S s 
A(f) cos [2nnf/f 

S 
- 0(f) ]df 

0 
(B.ll) 

N-l 
i l/N {A(O) cos@(U) + 2 

?L j= 
A(fj) cos [2nnfj/f - @(fj) I+ 

S A(fs/2) ~0s 1 m -@(fs/2) 1 I 
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The function Q(f) is odd, and hence we must have 0(O) = 0. Using 

this and applying a trigonometric identity to the last term,we have 

h n = (l/N) IA(O) + 2 y A(fJ) j=l . 
cos [2nrfj/fs - @(fj) I 

+ wn(fs/2) co.5 Wfs/2))3 

This yields the weights to be used in (3.41) to give the out- 

put of a digital filter which approximates the original filter. 
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APPENDM c 

DETERMINATION OF FREQUENCY CHARACTERISTICS IN SAMF'IED DATA 

BY 

Edward B. Anders 

Given a set of tabulated data which is periodic and admits a 

finite trigonometric expansion, one may determine the frequencies 

present in the data and the coefficients of these frequency components 

by using the following theorems. The procedure is extremely simple 

and is based on a simple numerical integration procedure--the 

trapezoidal rule. 

Theorem 1: Let 

h(t)=ao+ f(ancos$%t+bnsin$%t) 
n=l S S 

(c.1) 

where f 
S 

is the fundamental period of h(t). If h(t) is sampled at 
f f 

the N + 1 equally spaced points of [- -$, $ ] including the end points, 

then 

3 
agN)J N even 

-- 
$h(- 2) -I- c h(+) +$?I( f) = 2 cc .2) 

p=- 

(-l)'apN), N odd 
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E 
Note : c - 'k=@ 

means k=S, S+l, . . . , S+n where S+n ,< E,. S+n+l > E. 

Proof: Since sin x is odd, all terms of (C.l) cont,aining sin f znt 
S 

vanish. Thus, we are concerned only with terms containing cos$%t, 
S 

n=O,l,. . . . If N is even, then P is an integer and for integral 

B, we obtain 

gSN(LP) = agNcos 2rrBP = aBN af3NCoS fs N 

If N is odd, P is an odd multiple of -$, say P = m(l) m odd, and for 2' 

integral /3, we obtain 

aBNCoS fs N zSN(LP) = aBN cos 7fSm = (-1)'a 
BN 

To complete the proof we must consider two cases: 

I) When N is even, n f BN, S=O,l, . . . . 

II) When N is odd and n f SN, S=O,l, . . . . 

fs fs 
Case I: Consider the set of points 0, N, 2 7, . . . -- 

Substituting these g + 1 points into a term of (C-1) where n f SN, 

S=O,l, . . ., multiplying the first and last such quantity by 

$ and adding we obtain 

- -1 

1 a. 
2 

2 n 'OS fs %(O)+a C n m=l 
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N 5 27x fs = a,($ + C 
m=l 

cos 5n-p - $ cos rrn) 

N 1 25m 
sin(fi)T 

= 
"n( 

- &OS Jtn) 
2 sin+ 

sin nn cos + + cos Irn sin + 
= 

"n( 2 sin5; 
- $20~ fin) = 0. 

N+l ifs 3 f 
Case II: Consider the 2 

N fs 
points ~7, 2 i, . . . , T N. -- 

Substituting as in Case I but multiplying only the last by 

$ and adding we obtain, for n f BN, p = O,l,. . . , 

; -1 

a 
q 

cos 32 
n 

f 2 +- $an cos fin 

Pr 
S 

2 

N-l 

= COSnn -- $3 ; - mil cos yu - $ cos nn) 

sin(Ni-$)q 
=a n ( 

2 sin FN 
- ziIirfln - $ cos rtn) 

N 
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sin rrn cos 

an( 

g + cos sm sin g 1 = -- 
2 sing 

2 cos fin) 

= 0. 

Since the cosine function is even, the theorem is proved. 

Theorem 2: If h(t) is as in Theorem 1, using N + 1 equally spaced 

points of the interval [- 
f fs fs fs ++ 

JiTv-z+-Lrd including the end points 

of the interval, then 

Nl 

$ h(-f$ +E) + c 
fs :- 

PC-;+1 

h&P+&) ++t&+& 

= 

f 

E B-1 
N[ao + 2 (-1)2 apN + z(-1)2 bsN] , (-l)'real, N even, 

[ =l B=l 

B 
N[aO + 2 (-1)2 aBN + 2 (-l)%bpn 

p=1 @=l 
, (-l)Ereal, N odd. 

c [a,cos $(t Proof: h(t+$) = a0 + 
f- 

n=l 
s 4) + bnsinF(t+$)] 

cc.31 

a co 
=- z + C [a,(cos cc .4) 

n=l 
$kt cos E? 2N - sin$%t sin% ) 

S S 

+ bn(sin f Gnt cos 3cn TN + cos gnt sin 
fS 

$$I . 
S 
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II III III1 I 

When n+N, B=O,l, . . . , N even, we obtain 

= a@N (cos 27@P cos j3+ - sin 21fpP sin $ 
2) 

(-lj2 apN 

, B odd 

, p even 

and 

f f 

bBN 
sin$fPJ( 2, ") N Q 

= bsN(sin 2@P cos p$ + sin p$ cos 2fipP) 

0 , ,6 even 

= 
B-1 

(d2 bsN> f3 odd. 

When n=pN, @=O,l, . . . ,N, N odd, then P = m(-$), m odd, and 

we obtain 

0 , B odd 

E 

(-1)2 aBN, B even 

and 
0 , B even 

b@N sin fs 
&&) = 

B+l 

(-1)2 bgN, p odd 
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Again, to complete the proof there are two cases. These cases are 

as in Theorem 1. In either case, since sin x is an odd function, those 

terms of the last member of (C.4) containing sin f snt vanish. Since the 
S 

other two terms contain only one factor which depends on t, namely cos $%t, 
S 

we show as in Theorem 1 that they vanish when n f SN, S-0,1, . . . . 

Thus, if given a set of data which represents a band-limited function 

or a function which can be considered as band-limited by assuming all 

coefficients for n > N to be insignificant, we can 'determine all coefficients 

by use of the above two theorems. If 

h(t) = a0 + e -J '(an cos $t + bn sin 
n=l 

$nt), 
S S 

we can find a0 by using any number of equally spaced points greater than 

N + 1. For simplicity, we illustrate with N + 2 points. Thus, 

N+l 
f 

$h(-$) + 

2-l 
c 

P= 2 AC+1 

h(>P) + -$(2) = (N+l)(ao + fa 
B=1 B(N+l) ) ' 

Since an = 0 for n > N, we obtain (N+l)ao. To minimize the number of 

points required one usually uses a number such as 2N rather than N+2. 

The remaining coefficients can be found one by one beginning with N+l 

points and dropping one point each time. It is recommended that the ai, 

i=O,l, . . .,N be calculated first and then the b., i=1,2,. . .,N. 
if 

Due to the assumed periodicity, the shift of ri will not require 

fs fs going outside of [- ?,?I for points. We must only be careful as to 

which points will use $ as weights. 
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